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ABSTRACT

We propose a novel beam model for radio pulsars based on the scenario that the broadband
and coherent emission from secondary relativistic particles, as they move along a flux tube in a
dipolar magnetic field, forms a radially extended sub-beam with unique properties. The whole
radio beam may consist of several sub-beams, forming a fan-shaped pattern. When only one or a
few flux tubes are active, the fan beam becomes very patchy. This model differs essentially from
the conal beam models in the respects of beam structure and predictions on the relationship
between pulse width and impact angle β (the angle between line of sight and magnetic pole)
and the relationship between emission intensity and beam angular radius. The evidence for this
model comes from the observed patchy beams of precessional binary pulsars and three statistical
relationships found for a sample of 64 pulsars, of which β were mostly constrained by fitting
polarization position angle data with the Rotation Vector Model. With appropriate assumptions,
the fan beam model can reproduce the relationship between 10% peak pulse width and |β|, the
anticorrelation between the emission intensity and |β|, and the upper boundary line in the scatter
plot of |β| versus pulsar distance. An extremely patchy beam model with the assumption of
narrowband emission from one or a few flux tubes is studied and found unlikely to be a general
model. The implications of the fan beam model to the studies on radio and gamma-ray pulsar
populations and radio polarization are discussed.

Subject headings: methods: statistical — pulsars: general — radiation mechanisms: non-thermal

1. Introduction

Limited by the fixed orientation of the fixed line
of sight (LOS) with respect to the spin axis, it is
hard to observe the 2-D structure of radio emission
beam for pulsars. This has aroused extensive re-
searches and long-term debates on the radio beam
pattern of pulsars.

The conal and patchy beam models are hitherto
two general kinds of radio beam models. Based
on the empirical classification for the observa-
tional properties of radio pulsars, Rankin (1983,
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1990, 1993) proposed that the radio beam nor-
mally consists of two nested cones and a quasi-
axial core. Comparing with the early hollow-
cone model (Komesaroff 1970, Backer 1976, Os-
ter & Sieber 1976), the double-cone-core model
has the advantage in explaining a variety of pulse
morphology in terms of different LOS trajectories
across the beam. For instance, a LOS close to the
beam center may sweep across the core and double
cones and result in a pulse profile with five compo-
nents. Following this idea, Gangadhara & Gupta
(2001) identified 9 components for the high-quality
pulse profiles of PSR B0329+54 and claimed that
this pulsar has 4 distinct cones and a core. Ap-
plying a statistical approach to a sample of multi-
frequency profiles of conal triple and multiple pul-
sars, Mitra & Deshpande (1999) determined the
locations of conal components and concluded that
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a typical radio beam should consist of at least
three nested cones, although only one or more of
them may be active in individual pulsars. Unlike
the regular beam structure in conal beam models,
the patchy beam model (Lyne & Manchester 1988,
hereafter LM88) suggested that the intensity dis-
tribution within a beam is patchy and usually only
parts of the beam are visible. The beam pattern
was explained as the product of a pulse window,
usually a circular beam common to pulsars, and
a source function, which is randomly distributed
and unique to each pulsar (Manchester 1995). In
spite of the essential difference in intensity distri-
bution, the conal and patchy beam models have
a consensus that the radio beam has a boundary,
which is presumably circular or elliptical.

Hybrid radio beam models with patchy and
conal features were also proposed (hereafter called
patchy conal beam models). In one of the series of
work on the conal beam model, Rankin (1993) pre-
sented a cartoon of spotty inner and outer cones.
The luminous spots were presumed to originate
from some particular magnetic field lines which
have more copious secondary pairs and hence more
emitters than the others. In an alternative patchy
conal beam model proposed by Karastergiou &
Johnston (2007), the conal structure is supposed
to originate from the emission in a wide range of
altitudes along the outer field lines close to the po-
lar cap boundary, but the locations of active emis-
sion are discrete, forming a patchy pattern within
the conal ring. With this model, the authors tried
to explain why young pulsars tend to have sim-
pler pulse profiles than old pulsars by assuming
distinct altitude ranges for these two types of pul-
sars. The patchy beam pattern was also intro-
duced by Beskin & Philippov (2012) into a prop-
agation model where the outer and inner cones,
formed by the O-mode and X-mode emission re-
spectively due to different propagation paths, con-
tain discrete bright patches.

There have been many endeavors to test ra-
dio beam models. As stated by Gil & Krawczyk
(1996) and Kijak & Gil (2002), the conal beam
model predicts a weak frequency dependence for
the relative pulse phase between subpulses and
profile components, while the patchy beam model
predicts no dependence. The authors found that
the observed subpulse behavior favors the conal
beam model. Further evidence was suggested to

support the multi conal beam model (Kijak &
Gil 2002), including the binomial distribution of
the opening angles of beams or profile compo-
nents (Rankin 1993, Gil et al. 1993, Kramer et
al. 1994) and the tendency of large impact angles
for the pulsars with single- and double-peak pro-
files. In order to derive the 2-D image of the mean
radio beam, Han & Manchester (2001, hereafter
HM01) collected a sample of 87 normal pulsars
with multicomponent pulse profiles and created an
intensity stripe along the LOS within the normal-
ized circular beam for each pulsar, and then inte-
grated all the stripes to form an averaged inten-
sity map of the beam. Except for an enhancement
near the center, they found only a few mild en-
hancements in other parts of the beam. This pat-
tern was regarded as the evidence for the patchy
beam model. However, Kijak & Gil (2002) argued
that HM01’s work is inconclusive, because the fre-
quency dependence of pulse profiles, possible pe-
riod dependence of beam radius and the diversity
in conal and core component positions were not
excluded in their data reduction. In the recent se-
ries of work, Maciesiak et al. (2011), Maciesiak &
Gil (2011, hereafter MG11) and Maciesiak et al.
(2012, hereafter MGM12) suggested that the rela-
tionship W50 ∼ P−1/2 for the lower boundary line
in the scatter plot of 50% peak pulse width versus
pulsar period can be interpreted by incorporating
the spark model and the conal beam model.

Thanks to the discovery of relativistic spin pre-
cession in binary pulsars, it provides a unique
approach to probe the beam topography directly
(see Kramer 2012 for a review). The precession
of pulsar spin axis changes the orientation of our
LOS and enable us to scan different parts of ra-
dio beam. Up to now the tomography has been
carried out for 6 pulsars, PSR B1913+16, PSR
B1534+12, PSR J1141−6545, PSR J1906+0746,
PSR J0737−3039A and B. To account for the pro-
file changes of PSR B1913+16 over two decades,
it was suggested that the beam should be elon-
gated in the latitudinal direction to be some-
what hourglass-shaped rather than to be circu-
lar (Weisberg & Taylor 2005, Clifton & Weisberg
2008). The pulse profile of PSR B1534+12 is
found to be gradually broadening as out line of
sight moves further from the magnetic pole (Ar-
zoumanian 1995, Stairs et al. 2004, Fonseca et
al. 2014), which is contrary to the expectation if
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the beam is a circular cone. The radio beam pat-
terns were reconstructed by the data of pulse pro-
file and flux density for PSR J1141−6545 (Manch-
ester et al. 2010) and PSR J1906+0746 (Desvi-
gnes et al. 2013). PSR J1906+0746 has inter-
pulse emission, so the beam intensity maps from
both poles were derived. For both pulsars, the
scanned parts of their beams are partially illu-
minated, without any signature of conal rings.
These results present unambiguous evidence for
the patchy beam model. Meanwhile, the obser-
vations revealed a striking limb-darkening phe-
nomenon that the intensity tends to decrease to-
wards the edge of beam in both radial and trans-
verse directions, which has not been explained yet.
The profile of PSR J0737−3039A is long-term sta-
ble, which is interpreted as a result of very small
misalignment between the spin axis and the or-
bital angular momentum. A circular cone model
was used to interpret the profile (Manchester et
al. 2005, Ferdman et al. 2013, Perera et al. 2014).
The radio beam of PSR J0737−3039B was found
to be partially-filled horse-shoe shape (e.g. Per-
era et al. 2012, Lomiashvili & Lyutikov 2013).
Unlike the former other double pulsars, the mag-
netosphere and emission of PSR J0737−3039B is
strongly influenced by the wind from its compan-
ion PSR J0737−3039A, therefore, it may not be
an ideal case to test the intrinsic beam pattern
from an undisturbed pulsar magnetosphere.

The new discoveries from PSR J1141−6545 and
PSR J1906+0746 pose several questions: could
the patchy beam be a general pattern for radio
pulsars? How is the limb-darkening patchy beam
formed? Unfortunately, as far as we know, there is
no physical models in literature to account for the
formation of a patchy beam. In contrast, the ori-
gin of conal beam has been extensively explored.
A brief review below will be helpful to understand
the current status of the research on this respect.

It has been proposed that the conal and core
structure can be generated through the curvature
radiation (Sturrock 1971, Ruderman & Sutherland
1975, hereafter RS75, Gil & Snakowski 1990, Gan-
gadhara 2004, Wang et al. 2012), or through the
curvature maser in the relativistic plasma along
curved magnetic field lines (Beskin et al. 1988),
or through the inverse Compton scattering (ICS)
of the low frequency electromagnetic wave by sec-
ondary relativistic particles (Qiao 1988, Qiao &

Lin 1998, Xu et al. 2000, Qiao et al. 2001, Qiao
et al. 2004, Lee et al. 2009, Lv et al. 2011).
Despite the difference in radiation mechanism and
geometry, these models have three common ingre-
dients. (1) The emission is coherent. The demand
of coherence for pulsar radio emission has been
demonstrated by a number of works both theo-
retically (Ginzburg et al. 1969, Sturrock 1971,
Cheng & Ruderman 1977, Luo & Melrose 1992,
Kunzl et al. 1998, Qiao & Lin 1998, Melikidze et
al. 2000, Gil et al. 2004, Dyks et al. 2007) and
observationally (e.g. Hankins et al. 2003, Mitra
et al. 2009, Jessner et al. 2010). (2) The ra-
dio emission is narrow band, i.e. the emission at
a particular frequency should come from a fixed
or a narrow range of altitude. (3) A cone in the
beam is mapped to a bundle of open field lines
of which the cross section is annular on the po-
lar cap surface. In the updated version of spark
model (originally proposed by RS75), the pair pro-
duction areas (sparks) above the polar cap may
form multi annuli, leading to multi cones (Gil &
Sendyk 2000, hereafter GS00). In the ICS model,
emissions at the same frequency can be generated
at more than one altitude, thus multi cones can be
formed from one annulus of field lines (Qiao & Lin
1998). Among the three ingredients, the later two
points are vital to form a conal beam structure.

The narrowband assumption is thought to be
favored by the fact that the average pulse pro-
files of many pulsars broaden with decreasing fre-
quency, which is usually attributed to the radius to
frequency mapping (RFM), i.e. a lower frequency
emission comes from a higher altitude (Komesaroff
1970, RS75, Cordes 1978). However, counterex-
amples are often seen in multi-frequency observa-
tions (e.g. Hankins & Rickett 1986, Johnston et
al. 2008). Moreover, it is well known that a num-
ber of short-timescale features, which are related
to localized emission processes, e.g. single pulses
(Bartel & Sieber 1978, Kramer et al. 2003), mi-
crostructures (see Hankins 1996 for a review), gi-
ant pulses (Sallmen et al. 1999, Popov et al. 2006,
Jessner et al. 2010), nulling (Bartel et al. 1981,
Bhat et al. 2007), polarization properties in sin-
gle pulses (Karastergiou et al. 2002, Mitra et al.
2007), mode changing (Bartel et al. 1982, Chen et
al. 2011) and subpulse drifting (Smits et al. 2005),
are mostly of a broadband nature. It was postu-
lated that broadband emission may occur near the
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pair production fronts near polar caps or at higher
altitudes cooperating with narrowband emission
mechanism (e.g. Melrose 1996), or that a broad-
band subpulse or microstructure may be an en-
semble of a number of narrowband or broadband
single emitters (Cordes 1979). The cooperation
of narrowband and broadband mechanisms seems
possible, because there is evidence that the giant
pulses from the Crab pulsar, which can be seen in
a very wide frequency range, sometimes contain
a number of nanoshots with narrower bandwidths
from tens to hundreds of megahertz (Eilek & Han-
kins 2006).

Models on broadband emission for pulsars are
much fewer. Buschauer & Benford (1980) studied
the properties of both narrowband and broadband
coherent curvature radiation and compared them
with observations. They suggested that the broad-
band model could accommodate a wider range of
phenomena than the narrowband model. Barnard
& Arons (1986) investigated the effects of refrac-
tion on pulse profile, spectrum and polarization
in both the narrowband and broadband scenarios.
They found that the low-frequency pulse broaden-
ing phenomenon, used to be interpreted by RFM,
can be alternatively explained by a model that the
broadband emission occurring in a narrow range
of altitude undergoes more refraction at a lower
frequency due to transvers plasma density gradi-
ent and hence broadens the low-frequency pulses.
Recent simulations on the pair production in the
inner vacuum gap (hereafter IVG, Timokhin 2010)
and the polar gap due to space charge limited flow
(hereafter SCLF-gap, Harding & Muslimov 2011,
Timokhin & Arons 2013) revealed that the sec-
ondary eletrons/positrons are not quasi monotonic
in momentum, as many narrowband models had
assumed, but can have momentum spectra with
flat or moderate slope rates in many situations.
Such broad momentum spectra are probably fa-
vorable to generate broadband radio emission.

In the past four decades, efforts have been fo-
cused on developing empirical and physical mod-
els based on the idea of narrowband and coherent
emission to explore the origin of multi conal (and
core) beam structure. These models can success-
fully account for parts of the observational proper-
ties. Apart from the difficulties in explaining the
non-RFM type of frequency dependence of pulse
profiles, the discoveries of more pre-/postcursors

(Mitra & Rankin 2011), off-pulse emission (Basu
et al. 2011) and patchy beams of binary pulsars
present growing challenges against the conal beam
model.

This paper is the first one of a series of work
on an alternative model for pulsar radio beam in
terms of the assumption of broadband and coher-
ent emission. This model predicts a new type of
beam pattern, which looks like a fan or part of
a fan, and thereby is called the fan beam model.
It has different predictions from the conal beam
model on the relationships between pulse width
and impact angle and between other pairs of quan-
tities. This paper, mainly focusing on the observa-
tional evidence, is organized as follows. The beam
structure and relationships of the fan beam model
are derived in Section 2. The evidence, including
the observed beams of binary pulsars and three
statistical relationships base on a sample of 64 pul-
sars with well constrained impact angles are pre-
sented in Section 3. The observational tests for the
canonical and patchy conal beam models are pre-
sented in Section 4. A patchy beam model based
on the assumption of narrowband emission from
one or a few flux tubes is investigated and finally
excluded in Section 5. Section 6 are conclusions
and discussions. The implications of this model to
the studies on pulsar population and radio polar-
ization are also discussed.

2. The fan beam model

2.1. The scenario

Rather than developing a purely geometric
beam model, we are interested in exploring how
the emission mechanisms/propagation effects, sec-
ondary plasma flow and magnetic field geometry
shape the emission beam. The central question
is what the beam geometry will be when the sec-
ondary relativistic particles produce broadband
and coherent emission as they flow along a dipolar
magnetic flux tube. Since there is no consensus on
pulsar emission mechanisms and propagation ef-
fects, we prefer to use a phenomenological param-
eter q to describe the total effect (will be defined
in the assumption (3) below), which is adjustable
according to specific emission and propagation
mechanisms. The following basic assumptions are
made to simplify the problem.

4



• The global magnetic field is dipolar.

• Assumptions on the particle flow. (1) Large
amount of secondary electrons and positrons
are generated in polar gaps (IVG or SCLF-
gap) with the multiplicity factor M >> 1,
i.e., the total number density of electrons
and positrons is approximately M times of
the local Gouldreich-Julian number density
ngj. (2) Being quasi-neutral, the plasma
flows freely along the magnetic flux tubes.

• Assumptions on the emission mechanism
and propagation effect. (1) The emission
is coherent in an elementary volume λ3 (λ is
the wavelength of emission), where the emis-
sion power is proportional to the square of
the number of particles therein. The emis-
sions from separated elementary volumes
are incoherent. (2) The emission from λ3

is broadband. The shape of the averaged
radiation spectrum of a single particle is the
same everywhere in the emission region. (3)
The averaged emission power of a single par-
ticle is a power law function of the emission
altitude, viz. pe ∝ rq, where the altitude
r is measured from the stellar ceter in this
paper.

Some of the assumptions need more words.
Firstly, the term “broadband” means that either
the emission from an elementary coherent volume
is intrinsically broadband or it is a collective effect
due to assembling of many narrowband emissions,
which span a wide range of frequencies. Secondly,
the “averaged power” and “averaged spectrum”
for a single particle means that the quantities are
averaged over a timescale for obtaining the mean
pulse profile, therefore they are stable and useful
to model the mean structure of radio beam.

Although the assumption on the emission power
and spectrum is phenomenological, it can be
adapted to a variety of emission mechanisms and
propagation effects by adjusting the power law in-
dex q. For example, an electron or a positron with
constant kinetic energy will emit less power at
higher altitudes through the ICS process, roughly
in a power law with q ∼ −21. Considering the
curvature radiation instead, the index will be

1In the ICS model, the emission power of a single particle
is proportional to γ2u, where γ is the Lorentz factor of

q ∼ −0.52. When a particular absorption effect
correlated with the plasma density is considered,
the plasma may be more transparent to the emis-
sion at higher altitudes, therefore the relationship
becomes flatter and may even have a positive in-
dex. In the case that the real relationship is not
a power-law, e.g. an exponential or some other
functions, the index q itself needs to be adjusted
as a function of the coordinates of emission loca-
tion to mimic the real relationship. Anyway, it is
a practical treatment for the emission and propa-
gation mechanisms to simplify our model. In this
paper, q is assumed to be a constant for a single
pulsar. The statistical value will be constrained
with a sample of pulsars in Section 3.2.2.

We first describe the general picture of the emis-
sion beam qualitatively with the above assump-
tions. As the secondary particles flow out along
a flux tube, the number density keeps decreas-
ing due to the divergent nature of dipolar field.
This normally leads to decreasing emission inten-
sity, except if too large a positive index q is as-
sumed (q > 3 according to Section 2.2). Since the
emission at a higher altitude points further from
the magnetic pole, the intensity will decreases with
increasing beam radius when q < 3, or on the con-
trary when q > 3, where the beam radius ρ is de-
fined as the angle between the emission direction
and the magnetic pole (see Fig. 1). In this paper,
the first case is called the radial limb-darkening
intensity distribution. Fig. 1 shows the schematic
diagram for the formation of such a sub-beam gen-
erated from a flux tube.

The azimuthal (transverse) intensity distribu-
tion depends on further assumptions about the
particles distribution across the polar cap. In the
simplest case, if the secondary particles are uni-
formly distributed, the intensity will be constant
in any circular ring around the magnetic pole.
Such a model can only account for single pulse
profiles. More practically, the secondary particles
may be generated in a number of separated flux
tubes, and each flux tube will form a wedge-shaped
sub beam, which widens with increasing radius

the particle and u is the energy density of low frequency
electromagnetic waves (Qiao & Lin 1998). Since u ∝ r−2,
the emission power is also proportional to r−2.

2The emission power is proportional to γ4/̺, where ̺ ∼
r0.5/3 is the curvature of radius of a field line at the emis-
sion altitude r well within the light cylinder (RS75).
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due to the divergence of flux tube. There is an in-
tensity valley between a pair of sub-beams due to
lack of particles in the region between two neigh-
boring flux tubes. Then, the whole beam looks
like an axial fan with a set of wedge-shaped sub-
beams. This kind of beam is called the fan beam.
When only a few flux tubes are assumed to be ac-
tive in emission, the fan beam will show a very
patchy pattern. Therefore, this model may give
a reasonable explanation for the origin of patchy
beam.

The above qualitative analysis has revealed a
new type of emission beam pattern strikingly dif-
ferent from the conal beam structure. Unlike the
conal beam which has a circular or an elliptical
boundary, the fan beam has no boundary. This
is because we choose the broadband assumption
while the conal beam model choose the narrow-
band assumptions. In the following subsections,
we will derive the radial intensity-radius relation-
ship, the transverse intensity-azimuth relationship
and an important prediction − the relationship
between pulse width W and impact angle β. The
beam structure and resultant profiles at various
viewing geometries are simulated.

2.2. Radial intensity distribution

In this paper, the intensity is defined as the
emission power over a unit solid angle around an
emission direction. Since the emission from a sec-
ondary relativistic particle is beamed into a very
narrow solid angle with a half opening angle of
∼ 1/γ, where the Lorentz factor γ is typically
larger than 100, we assume that the emission di-
rection is aligned with the tangent of field line for
the convenience of calculation. In order to derive
the intensity, we first select an arbitrary subregion
in a flux tube and calculate its solid angle formed
by the tangents of the boundary field lines. Then,
we calculate the volume, the particle number den-
sity and the total emission power, and finally the
emission intensity from the region.

Regarding the axial symmetry of magnetic
dipole fields, it is convenient to describe an emis-
sion point with the polar angle θ, the azimuth an-
gle ϕ and the altitude r (counted from the stellar
center) in the spherical coordinate system where
the polar axis is the magnetic pole (Figs. 1 and
2). The open field lines can be distinguished by
two parameters: the azimuth ϕ between a field

line plane and the meridian plane containing the
rotation and magnetic axes, which is counted an-
ticlockwise from the equatorial side of meridian
plane, and the parameter f ≡ Re/Rc, where Re is
the maximum altitude for an open field line and
Rc = Pc/(2π) is the light cylinder radius, with P
the pulsar period. The parameter f tells how close
the field line is with respect to the magnetic pole.
For the last open field lines, Re varies from Rc

to ∼ 3Rc depending on inclination and azimuth
angles. For simplicity, we neglect this difference
and assume Re = Rc for all the last open field
lines. Therefore, we have f = 1 for last open field
lines and f > 1 for inner open field lines.

Fig. 2(a) shows a typical subregion in a slice of
a flux tube. The slice confined by the field lines “1,
2, 3, 4” is divided into a number of this kind of sub-
regions, started from the polar cap surface to high
altitudes. The field lines marked with “1” and “2”
(“3” and “4”) stand for the outer and inner (with
respect to the magnetic pole) boundary field lines
of the slice. Each pair of boundary lines have the
same azimuth angle but different f parameters,
where f2 > f1 and f4 > f3, meanwhile, f1 ≃ f3
and f2 ≃ f4. The whole flux tube can be divided
azimuthally into a number of slices. The slices
may have different boundary parameters f1 and
f2, depending on the shape of the cross section of
flux tube. We will consider two kinds of flux tube
geometry in Section 2.4, one has a sector-shaped
cross section (Model A) and the other has a cir-
cular shape (Model B). In Model A, all the slices
have the same pair of f1 and f2, while in Model
B, f1 and f2 depends on the azimuth ϕ of each
subregion. The cross sections of flux tube and the
corresponding slices are illustrated by Fig. 2(b)
for these two models.

For clarity, the poloidal and toroidal cross sec-
tions of the subregion are presented by Fig. 2(c)
and (d), respectively. In panel (c), the two straight
lines with the polar angles θ and θ + dθ stand for
the lower and upper boundaries (with respect to
the polar cap) of the subregion. At a pair of points
where a boundary field line intersect the straight
lines, e.g. A and B, or C and D, the tangents
form an small angle dρ, where the beam radius ρ
is the anger between the tangent of a field line at
r and the magnetic pole. In panel (d), the two az-
imuthal boundary field lines, marked with “1” and
“3”, are separated from each other by a small az-
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Fig. 1.— The schematic diagram for the formation of limb-darkening sub-beam from a flux tube extending
from the polar cap. α is the inclination angle between the rotation (Ω) and magnetic (µ) axes. β is the
impact angle between line of sight (LOS) and µ axis. It is assumed that the secondary pair plasma streams
along the flux tube and generate broadband and coherent emission. Emissions at a single frequency can
be generated at all the altitudes (e.g. the red dashed arrows), and hence forming a sub-beam, which fades
outwards from the magnetic pole. The beam radius ρ stands for the angular distance between the projection
of magnetic pole “M” and the projection of an emission direction “E” on the celestial plane.
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imuth angle dϕ. The tangents of field lines at two
boundary points A and E open an angle dτ . dρ
and dτ should be much larger than the 1/γ beam-
ing angle of a single particle so that the angular
power distribution in the single-particle emission
beam can be ignored. Whenever γ is higher than
hundreds, dρ ∼ 1o and dτ ∼ 1o would be large
enough to ensure that. In this circumstance, the
particle number density varies little poloidally be-
tween A and B (or C and D) as well as toroidally
between A and E, enabling the following deriva-
tion to be valid.

The tangents at eight vertices of the subregion
form a solid angle dΩ, as projected in the celestial
sphere centered on the star (Fig. 3). It is easy to
find dΩ = dρdτ , where dτ ≃ sin ρdϕ, which can be
derived by using the law of cosines in the spherical
triangle △MST. In the dipole field geometry, one
has ρ ≃ 3/2θ when θ is not so large (see Appendix
A). Then, the solid angle reads

dΩ ≃ 9

4
θdθdϕ. (1)

When deriving the emission power dP for this
subregion, it should be noted that the arc length
ds of the inner boundary line would be signifi-
cantly larger than that of the outer boundary line
when f2 >> f1, and the particle number density
would vary remarkably with f as well. Therefore,
one needs to divide the whole subregion within f1
and f2 into a number of smaller ones with an inter-
val df . The volume of such an elementary region
is (see Appendix B)

dVf ≃ R3
cθ

7f2dfdθdϕ. (2)

The next step is to find the particle number den-
sity in dVf and calculate the emission power dPf ,
where the subscription “f” indicates that these
quantities are for the elementary region within f
and f +df . Then, the total emission power dP is
the integration of dPf over f .

The altitude dependence of particle number
density can be derived using the dipole field geom-
etry and the assumption of free flow. According to
the assumption, the initial total number density of
secondary electrons and positrons is

n0 = Mngj0, (3)

with the Gouldreich-Julian number density

ngj0 ≃ |Ω ·Bs|/(2πce) ≃ Bs cosα/Pce, (4)

where Ω is the rotation angular velocity, Bs is the
surface magnetic field, α is the inclination angle, c
and e are the light velocity and the electron charge,
respectively. In the case of free flow, when ne-
glecting the trivial energy loss due to radiation,
the particle number density follows the flux con-
servation law nS = n0S0, where S and S0 are the
cross section areas of a flux tube at altitudes r
and R (stellar radius), respectively. S and S0 are
related to each other by the law of magnetic flux
conservation, i.e. BS = B0S0. Combing these
relations with the dipole magnetic field strength
B ≃ Bs(R/r)3, one has

n ≃ n0(R/r)3, (5)

Under the basic assumptions of emission mech-
anism and propagation effect, the emission power
from a coherent volume λ3 is

δPc = (nλ3)2ie0(r/R)q, (6)

where ie0, the averaged emission power of a single
particle, is modified by a power-law term (r/R)q

to represent the possible dependence on altitude.
Note that ie0 may be a function of emission fre-
quency, but in the following calculation we ignore
such dependence. Its possible influence to fre-
quency dependence of pulse profiles will be studied
in a subsequent paper.

In a larger volume dVf that consists of many
coherent volumes, the emissions are incoherently
superposed, thus the emission power is

dPf =
dVf

λ3
δPc = dVfn

2λ3ie0(r/R)q. (7)

Integrating over all the elementary regions from f1
to f2, one has the total emission power from the
subregion

dP =

∫ f2

f1

dPf (8)

Eventually, the emission intensity reads

I =
dP

dΩ
(9)

Substituting Eqs. (1)−(8) into Eq. (9),
and using the dipole field relations Bs ≃ 3.2 ×
1019(PṖ )1/2(Gauss) and r ≃ 4/9Reρ

2 (for r <<
Re), we have the emission intensity (see Appendix
B for details)

I = AP q−4Ṗ cos2 α
(

f q−3
1 − f q−3

2

)

ρ2q−6, (10)
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Fig. 2.— (a) The 3-dimensional structure of a sub emission region in a flux tube, as enclosed by the thick
lines and arcs within two groups of coplanar open field lines “1, 2” and “3, 4”. O is the stellar center. (b)
The cross section for flux tubes on the polar cap. The thick solid curves stand for the boundary of flux
tubes in Models A and B, and the dashed lines represent the division for slices of sub tubes. Each slice has
approximately the shape confined by the field lines “1, 2, 3, 4” in panel (a). (c) The poloidal cross section
of the subregion enclosed by “ABCD”, where θ is the polar angle and ρ is the opening angle of field line
tangent with respect to the µ axis at an emission point. (d) The transverse scale dw of the subregion. The
vertices A and E are separated azimuthally by dϕ and open an angle of dξ with respect to the stellar center.
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where the coefficient is

A =
1

3− q

(

6.4× 1019

3ce

)2 (
2c

9π

)q−3

R6−qλ3M2ie0.

(11)

The last term in the right hand, ρ2q−6, indicates
a radius dependence of emission intensity resulting
from the assumptions of coherent emission, plasma
free flow and the index q, which have been quali-
tatively discussed before. When q < 3, it predicts
a limb-darkening relationship.

Beside this, the term
(

f q−3
1 − f q−3

2

)

also af-

fects the I − ρ relationship. It may cause different
trends in the central and outer parts of emission
beam. To see this, without losing generality, we
consider a flux tube located between the last open
field lines (fom = 1) and a layer of innermost open
field lines with a fixed fim, where the initial parti-
cle density n0 is constant on the polar cap and the
coherent emission starts from the polar cap (relax-
ation of these assumptions will be discussed soon).
In order to see the emission from all the field lines
between fom and fim, there must be ρ ≥ ρt, where
the transition radius ρt equals the opening angle of
the polar cap boundary ρpc ≃ (3/2)(R/Rc)

1/2. In
this case, namely, for the outer beam with ρ ≥ ρt,

the term
(

f q−3
om − f q−3

im

)

is a constant, and the in-

tensity follows I ∝ ρ2q−6. However, in the in-
ner beam with ρ ≤ ρt, for any emission direction
with ρ, the outermost visible field line is deter-
mined where the emission direction from its foot
point on the polar cap is aligned with the LOS,
which leads to f1 = (9/4)(R/Rc)ρ

−2. Therefore,
the visible emission region is confined between f1
and f2 = fim, which obviously shrinks, because
f1 > 1. Then, Eq. (10) reduces to

Iinner = AP−1Ṗ cos2 α

×
[

1−
(

9πR

2c

)3−q

f q−3
im P q−3ρ2q−6

]

. (12)

When q < 3, it shows an opposite trend that the
intensity increases with increasing radius in the
inner beam.

In the above analysis, the polar cap boundary
plays the role of transition location for intensity
distributions, because we assume a uniform n0,
set the lowest coherent emission altitude to be R
and select the last open field lines as the outer

boundary of flux tube. Any deviation from these
three assumptions will lead to different transition
location. For example, if a layer of inner open
field lines is selected as the outer boundary of a
flux tube, namely fom > 1, or n0 is peaked at an
inner open field line within the flux tube, the tran-
sition location will move inwards to the magnetic
pole, thereby ρt < ρpc. The later case can be seen
in Figs. 4 and 9 (Models B1 and B2). On the
contrary, if the lowest coherent emission altitude
is high above the polar cap, i.e. rL > R, while
the other two assumptions remain, the transition
location will have ρt ≃

√

rL/Rρpc > ρpc.

To summarize, the radial intensity distribution
in the sub-beam formed by a flux tube is twofold:
starting from the magnetic pole (or a place near
the magnetic pole), the intensity increases first,
reaching its maximum at ρ = ρt and then fades
with increasing ρ in a form of power law. This
feature can be seen in the upper panels of Figs.
5-12.

2.3. Transverse intensity distribution

The transverse (azimuthal) intensity distribu-
tion in the beam depends on the azimuthal distri-
bution of number density of secondary particles.
Being enlightened by the idea of sparks in RS75
and GS00, it is assumed that there are some dis-
charging flux tubes on the polar cap, but their
transverse sizes are not necessary to be the same
as those of sparks. The number density of sec-
ondary particles, or equivalently the multiplicity
factor M , is probably a function of f and ϕ within
a flux tube. Then, Eqs. (10)-(12), which only ap-
ply to the homogeneous distribution ofM , must be
revised. For simplicity, the lowest coherent emis-
sion height is set as rL = R in the following deriva-
tion. The effect of a higher rL will be discussed by
the end of this section.

We start from an elementary region within
f − f + df at a given ϕ in a flux tube. Its in-
tensity should be dI ∝ (3 − q)M(f, ϕ)2f q−4df
(by replacing f1 and f2 with f and f + df in Eq.
(10), respectively). Then, for the outer part of
the sub-beam, namely, ρ > (3/2)

√

R/(Rcf1), the
total intensity from the whole flux tube reads

Iouter(ϕ) = A1P
q−4Ṗ cos2 αρ2q−6

×
∫ f2

f1

M(f, ϕ)2f q−4df, (13)
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where the coefficient is

A1 =

(

6.4× 1019

3ce

)2 (
2c

9π

)q−3

R6−qλ3ie0. (14)

Note that the boundaries f1 and f2 may also be a
function of ϕ, depending on the shape of the cross
section of a flux tube on the polar cap.

For the inner part where ρ . (3/2)
√

R/(Rcf1),
the outmost visible field line corresponding to
a given ρ shrinks inwards, which satisfies fo =
9R/(4Rcρ

2). Thus the lower boundary of inte-
gration should be determined by f ′

1 = min[fo, f1],
where f1 is the real outer boundary of the flux
tube at a given azimuth ϕ. Then the the total
intensity is

Iinner(ϕ) = A1P
q−4Ṗ cos2 αρ2q−6

×
∫ f2

f ′

1

M(f, ϕ)2f q−4df. (15)

To explore how the geometry of flux tubes and
the secondary particle distribution affect the beam
geometry, we consider two kinds of models below.

In the first case (Model A), M is assumed to be
constant along the colatitude dimension but fol-
lows a gaussian distribution in the azimuthal di-
mension, peaked at the central azimuth ϕ0 of the
flux tube, i.e. M = M0 exp[−(ϕ − ϕ0)

2/(2σ2)].
The flux tube is assumed to be within [f1, f2] for
all the azimuth angles, where f1 and f2 are con-
stant. For the intensity in the outer part, Eq. 13
is modified as

IAouter(ϕ) = A′P q−4Ṗ cos2 αe−(ϕ−ϕ0)
2/σ2

×
(

f q−3
1 − f q−3

2

)

ρ2q−6, (16)

where the coefficient is

A′ =
1

3− q

(

6.4× 1019

3ce

)2 (
2c

9π

)q−3

R6−qλ3M2
0 ie0.

(17)
For the intensity in the inner part, Eq. (15) is
modified as

IAinner(ϕ) = A′P−1Ṗ cos2 αe−(ϕ−ϕ0)
2/σ2

×
[

1−
(

9πR

2c

)3−q

f q−3
im P q−3ρ2q−6

]

. (18)

In the second case (Model B), it is assumed that
the cross section of a flux tube is circular and M

follows a gaussian distribution around the center
of the flux tube. For convenience, a dimensionless
colatitude χ ≡ θ/θpc is used below to describe
the latitudinal position of the foot point of a field
line on the polar cap, where θ and θpc are the
polar angles of the foot points of an inner and the
last open field lines, respectively. χ and f can be
converted to each other by

χ =
3

2

(

R

fRc

)1/2

ρ−1
pc . (19)

Given the position of the center (χ0, ϕ0) and the
dimensionless radius ℜ0 of the flux-tube cross sec-
tion (ℜ0 ≤ 1 − χ0), the Gaussian distribution of
M is M = M0 exp [−ℜ2/(2σ2)], where ℜ is the
dimensionless angular distance from an arbitrary
point to the flux tube center. Then the intensity
of the outer part reads

IBouter(ϕ) = A2P
q−4Ṗ cos2 αρ2q−6

×
∫ f2

f1

e−
χ
2
0+χ

2
−2χ0χ cos(ϕ−ϕ0)

σ2 f q−4df, (20)

where

A2 =

(

6.4× 1019

3ce

)2 (
2c

9π

)q−3

R6−qλ3ie0M
2
0 ,

(21)
with the boundary

f1,2 = (9/4)(R/Rc)[ρpcℜ0 sinϑ1,2/ sin(ϕ−ϕ0)]
−2,

where ϑ1,2 = arccos[sin(ϕ− ϕ0)
2χ0/ℜ0 ∓ cos(ϕ−

ϕ0)
√

1− (χ0/ℜ0)2 sin(ϕ− ϕ0)2] (see Appendix C
for derivation). In the inner part of the sub-beam,
there is

IBinner(ϕ) = A2P
q−4Ṗ cos2 αρ2q−6

×
∫ f2

f ′

1

e−
χ
2
0+χ

2
−2χ0χ cos(ϕ−ϕ0)

σ2 f q−4df. (22)

In fact, Eqs. (16)-(18) and (20)-(22) give the
full description for the radial and transverse inten-
sity distribution of a sub-beam in Models A and B,
respectively. The beam shape and resultant pro-
files will be modeled in the following subsection.

In the above derivation it is assumed that the
coherent emission starts from the polar cap. If the
lowest emission altitude is higher, the transition
radius for the outer and inner parts of beam should
be ρt = (3/2)

√

rL/(Rcf1).
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2.4. Modeling beam patterns and average

pulse profiles

The above formulae only apply to a single flux
tube; to form a global beam pattern, one needs ad-
ditional assumptions on the configuration of dis-
charging flux tubes across the polar cap, including
the locations of flux tubes and the multiplicity fac-
tors therein (may be inhomogeneous). The follow-
ing simulations for Models A and B are presented
as simple examples. There are a vast variety of
configurations of discharging areas and particle
density distributions, whose observational conse-
quences differ in details. However, these simple
examples are still useful to infer the necessary con-
figurations that can account for observations.

The simulations follow two steps. In the first
step we designate the geometry of flux tubes. In
model A, 8 discharging areas with sector-shaped
cross sections are assumed to exist on the polar
cap, each occupying an azimuthal range of 45o (see
Fig. 4). Their central azimuths are located every
45o starting from ϕ = 0. In model B, the discharg-
ing areas are assumed to be circular, which are all
centered at χ0 = 0.7 with a radius ℜ0 = 0.3. The
centers are placed every 51.5o in azimuth dimen-
sion starting from ϕ = −5o, so there are totally 7
discharge areas (see Fig. 4).

In the second step we assign the multiplicity
distribution across the polar cap. It is of par-
ticular interest to see how the inhomogeneity of
the multiplicity among flux tubes affects the beam
pattern and average pulse profiles. Therefore, we
investigate two subclasses for each model: one is
the homogeneous case that all the discharging ar-
eas have the same multiplicity pattern, which are
called models A1 and B1, respectively, the other is
the inhomogeneous case that two areas are domi-
nant in pair production over the others, which is
called model A2 and B2. The dominant areas are
centered at ϕ = 0 and 180o in Model A2 and cen-
tered at ϕ = −5o and 149o in Model B2. In both of
these sub models, the maximummultiplicityM0 in
the dominant areas (at central azimuth in Model
A2 and at center of the area in Model B2) are 10
times of those in the other areas.

In the following simulation the index q is fixed
as 2, close to the values constrained from a sam-
ple of pulsars in Section 3.2. The lowest emission
altitude is set as rL = R for simplicity.

Figs. 5 to 12 show the beam patterns of Mod-
els A1, A2, B1 and B2 for inclination angles of
α = 10o and 80o, respectively, together with the
average pulse profiles at a number of impact angles
for each model. In the contour maps of intensity
distribution (the upper-left panels in each figure),
we plot the equi-radius circles from 1 to 6 times of
ρpc. This is especially helpful to view the intensity
structure in the inner beam (the upper-right pan-
els). A set of LOSs are also plotted in the contour
maps, marked with their impact angles. We take
ρpc ≃ 3.3o in our calculation, corresponding to a
pulsar period P = 0.15 s.

The above models assume a few flux tubes in
the polar cap. To compare with the case of a
large number of flux tubes, we simulate a model
B3, where the single flux tube follows the pattern
of Model B, but totally 90 flux tubes are evenly
spaced along the polar cap boundary and the size
of each flux tube is very small. We take the fol-
lowing parameters/assumptions in the simulation:
χ0 = 0.9, ℜ0 = 0.05 and the same peak multiplic-
ity factors for all the flux tubes. The diagram of
the flux tubes and the simulated beam and profiles
for α = 30o are presented by Figs. 13 and 14.

Below we summarize the main features and the
inference that can be drawn from the simulated
results.

(1) Both kinds of models present limb-darkening
feature in both the radial and the azimuthal di-
mensions, except that the intensity trend under-
goes transition near or within the polar cap bound-
ary (mainly because of the assumption rL = R).
The radial limb-darkening feature in the outer
beam follows a power-law ρ2q−6, which is a conse-
quence of cooperation of coherent emission, par-
ticle free flow and altitude dependence of single-
particle emission power. The transition of radial
intensity trend in the inner beam is caused by the
shrinkage of emission region for very small ρ and
the attenuation of secondary particle density to-
wards the magnetic pole (if it exists, e.g. in Model
B). The transvers limb-darkening phenomenon is
caused by the continuous attenuation of particle
density towards the edge of flux tube.

(2) Discarding the detailed intensity distribu-
tion in the sub-beams, the shapes of sub beams in
Models A and B looks very similar. This is be-
cause the shape is determined by the divergence
nature of dipolar flux tubes.
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(3) In the outer beam, the pulse width broad-
ens with increasing |β|. This is also a natural con-
sequence of the divergence nature of dipolar flux
tube. However, this trend does not hold when the
LOS sweeps across the central part of the beam,
because the intensity distribution therein is more
complex and the LOS may sweep across the bright
parts of a few sub beams. This break of pulse-
width-impact-angle relationship is indeed seen in
observational data, as shown in Section 3.2.

(4) Models A1 and B1 tend to predict more
complex and wider profiles than Models A2 and
B2. This is because all the flux tubes have the
same activity in emission in Models A1 and B1,
thus the emission from the flux tubes outside the
meridian plane are still strong enough to be ob-
served, even though the radial limb-darkening ef-
fect has caused more attenuation in the observed
intensity for them. Especially, Models A1 and B1
predicts growing complexity with increasing |β| in
the cases of small inclination angles, which is not
supported by the data (see Table 1 for α and β
and the number of pulse components Nc). Since
normal pulsars have simple profiles (e.g. Karaster-
giou & Johnston 2007), these features strongly
suggest that only a limited number of discharging
flux tubes should be dominant in pair production
and emission activity.

(5) Ignoring the spikes, Model B3 can only pro-
duce single-component profiles for relatively large
impact angles. In order to predict double- and
multiple-component profiles, one has to assume
that the peak multiplicity factors in the flux tubes
are modulated azimuthally and form a few large-
scale structures. General speaking, this kind of
model with small-size flux tubes and large-scale
multiplicity modulation, is equivalent to the mod-
els invoking large-size flux tubes in the capability
of predicting various kinds of pulse profiles.

2.5. The W − |β| relation
The above simulation shows that the pulse

width W increases with increasing impact angle
|β| in the outer beam. Below we derive the rela-
tionship, which will be used in Section 3.2 to test
our model.

The above points (2)-(5) suggest that proba-
bly only a few flux tubes are active and visible, we
simply assume that the effective emission region is

confined within an azimuth range [−ϕ, ϕ] around
the meridian plane (note that this range may con-
tain more than one flux tubes). According to the
spherical geometry relationships, we have

cos ζ = cosα cos ρ− sinα sin ρ cosϕ, (23)

cos ρ = cosα cos ζ + sinα sin ζ cosΦ, (24)

and
sin ρ

sinΦ
=

sin ζ

sinϕ
, (25)

where ζ = α+ β is the viewing angle between the
LOS and the rotating axis, Φ is the pulse longi-
tude.

Substituting Eqs. (24) and (25) into Eq. (23),
and using Φ = W/2, the formula is simplified as

cos(
W

2
+ C) =

sinα

tan(α+ β)
(

cos2 α+ tan−2 ϕ
)1/2

,

(26)
where C = arctan(secα/ tanϕ). It can be found
that no matter β > 0 or β < 0, W will increase
with |β|, which is shown by Fig. 15(a). Note that
Eq. (26) only applies to the outer beam.

To derive the W − |β| relationship for the in-
ner beam is difficult because of the reversal in-
tensity distribution. In some cases, the LOS may
see emissions from other less active flux tubes far
away from the meridian plane (see β = 1o and 2o

in Fig. (12) for examples). Since one tends to see
more parts of the polar cap, ρb ≃ 1 ∼ 2ρpc may
be a rough approximation for the beam size when
|β| . ρt

3.

We must point out that the above mentioned
pulse width is completely determined by the
boundary of the flux tube, irrespective of the in-
tensity distribution in the emission beam, hence
it can be called the geometric pulse width. The
most often used pulse width, W50 or W10, which
is measured at the 50% or 10% level of pulse peak,
obviously depends on intensity distribution. It is
possible that the intensity drops so abruptly as the
LOS sweeps towards the lateral beam edges that
W10 becomes smaller than the geometric width

3The relationship W ∝ P−1/2 derived from the lower
boundary line (hereafter LBL, e.g. MG11) in the diagram
of pulse width versus period suggests that this approxi-
mation is viable, because the opening angle of polar cap,
ρpc ∝ P−1/2, does follow this relation. Further studies on
the LBL will be presented in a subsequent paper
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Fig. 4.— Four models of density distribution of secondary plasma across the polar cap (the dark ellipse in
each panel). The discharging flux tubes are assumed to be 8 in Models A1 and A2, and 7 in Models B1 and
B2. In Model A, the cross section of a flux tube is sector-shaped, and the particle density is a Gaussian
function that only depends on the magnetic azimuth ϕ. In Model B, the cross section is circular, and the
particle density is a two dimensional Gaussian function peaked at the center of a flux tube. The central
vertical line represents the magnetic pole. The dashed line stands for the projection of the meridian plane.
In Models B1 and B2, the flux tubes are located in the outer part of polar cap. The heights of the bumps are
proportional to the local particle densities. In Models A1 and B1, the maximum particle densities are the
same for all the flux tubes. In Models A2 and B2, two flux tubes are dominant, with the maximum number
density being 10 times the others.
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Fig. 5.— The modeled beam and pulse profiles for Model A1, where 8 discharging flux tubes with sector-
shaped cross section are distributed in the polar cap. The top left panel is the beam projected on the viewing
plane when looking down to the magnetic pole. The pole is located at the center (0,0), and the white dot
marked with the symbol “Ω” stands for the spin axis. In this case, the inclination angle is α = 10o. The
“North-South” coordinate means the angular distance from the magnetic pole toward or away from the
spin axis, and “East-West” coordinate is the angular distance along the direction perpendicular to magnetic
pole-spin axis baseline. The white dashed circles around the spin axis, one of which marked with “LOS”,
represent a set of line of sights, with the corresponding impact angle marked for each line. A group of 6 gray
dashed circles centered on magnetic pole, the outmost one of which is marked with “e.r.l”, are the equal-
radius lines spanning from ρpc to 6ρpc with a step of ρpc. The intensity contours are plotted in logarithmic
scale in arbitrary units, stepping outwards by a factor of 1/2. Since all the flux tubes have identical particle
distribution, the sub-beams also have the same pattern of intensity distribution. The limb-darkening index
and the lowest emission altitude are set as δ = −2 and rL = R in the calculation, respectively. The top
right panel is the zoom-in picture of the central part of the top left panel, reflecting the beam structure near
and within the polar cap boundary with the radius of ρpc, as presented by a gray circle marked with “e.r.l”.
The arrow indicates the direction toward the spin axis. Four lines of sight from β = −2o to 3o are shown by
darker dashed lines. The lower panel are pulse profiles calculated with α = 10o for a number of β angles,
which are marked beside individual profiles.
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Fig. 6.— The simulated beam and pulse profiles for Model A1. As Fig. 5 except α = 80o. The arrows
indicate the direction toward the spin axis, which is out of the top boundaries of the plots.
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Fig. 7.— The beam and pulse profiles for Model A2, where two flux tubes are dominant in particle density.
The two sub-beams produced by the dominant flux tubes are more luminous than the others. See Fig. 5 for
details.
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Fig. 8.— The modeled beam and pulse profiles for Model A2. As Fig. 7 except that α = 80o.
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Fig. 9.— The beam and pulse profiles for Model B1. 7 identical discharging flux tubes are assumed to be
located in the outer part of polar cap, leaving a small dark region around the beam center. The inclination
angle is α = 10o. See Fig. 5 for other details.
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Fig. 10.— The modeled beam and pulse profiles for Model B1. As Fig. 9 except that α = 80o.
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Fig. 11.— The beam and pulse profiles for Model B2, where two flux tubes are dominant. The inclination
angle is α = 10o.
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Fig. 12.— The and pulse profiles for Model B2. As Fig. 11 except that α = 80o.
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Fig. 13.— An example of densely distributed flux tubes in the polar cap (Model B3). 90 evenly spaced
flux tubes are located near the polar cap boundary. The particle density follows 2-dimensional Gaussian
distribution in each flux tube, and all the flux tubes are identical.

Fig. 3.— The solid angle (shadowed region)
formed by the subregion shown in Fig. 2(a). M
stands for the projection of the magnetic pole.
The emission directions from A and E are pro-
jected to S and T on the celestial sphere.

W . Will the increasing trend of W − |β| relation-
ship still hold? Below we demonstrate that even
in the extreme case such a trend still exists.

We consider an extreme case that the inten-
sity is constant for any circle around the beam
center. In the outer part of the beam, the in-
tensity follows a simple limb-darkening relation,
I = I0ρ

δ (δ < 0). Given a LOS with β, one will
see the maximum intensity when ρ reaches its min-
imal value, i.e. ρ = |β|, therefore, Ipk = I0β

δ.
For a level ηIpk (η < 1), at which the pulse
width is defined, the boundary intensity drops to
Ib = ηI,pk. Using the limb-darkening relation, one
finds the boundary radius ρb = η1/δβ. Then the
corresponding pulse phase can be figured out via
cosΦb = (cos ρb − cosα cos ζ)/(sinα sin ζ) (from
Eq. (24)), and the pulse width will be

W = 2Φb = 2 arccos

[

cos(η1/δβ)− cosα cos ζ

sinα sin ζ

]

.

(27)
Again, no matter β > 0 or β < 0, W will increase
with |β|, which is shown by Fig. 15(b). This ten-
dency can also be found in the profiles in Fig. 14.

In the following section, we will use Eq. (26) to
calculate the pulse width when |β| > ρpc but fix
the beam size as 2ρpc when |β| ≤ ρpc.
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Fig. 14.— The beam and pulse profiles for Model B3. The profiles are calculated with α = 30o.
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Fig. 15.— The modeled relationship between pulse width and impact angle, with (a) for Eq. (26) and (b)
for Eq. (27). In panel (a), three group of solid and dashed curves marked with “1, 2, 3” are calculated with
α = 10o, 30o and 60o respectively, where ϕ = 40o is fixed. The solid and dashed lines are for β > 0 and
β < 0, respectively. When α = 90o, negative and positive impact angles will produce the same curve, as
presented by the the dotted line. In panel (b), the solid, dashed and dotted curves have the same meaning
as in panel (a), except that the parameter ϕ = 40o is no longer useful but replaced by δ = −2 and η = 0.1,
where η = 0.1 means we always measure the full pulse width at the level of 10% peak intensity for any
impact angle.

3. Tests for the fan beam model

In this section, we focus on the observational
tests for the predictions on pulse width evolution
and radial intensity distribution by the fan beam
model. In Section 3.1, the observed beam prop-
erties of a couple of precessional pulsars are com-
pared with the model. The phenomenon of in-
creasing pulse width with increasing impact angle
for PSR B1534+12, the radial intensity distribu-
tions of PSR J1141−6545 and PSR J1906+0746
are in general agreement with the main features
of fan beam model. Three relationships predicted
by the model, i.e. W − |β| relationship, the radial
limb-darkening relationship for the outer beam
(I ∝ ρ2q−6) and the relation between the upper-
limit of impact angle and pulsar distance, are
tested statistically based on a sample of 64 pul-
sars collected from literature, of which the impact
angles are known by fitting the linear polariza-
tion position angle (hereafter PPA) data with the
rotating vector model (hereafter RVM, Radhakr-
ishnan & Cooke 1969). The relationships derived
from the data can be successfully reproduced by
the fan beam model. Details are described in Sec-
tions 3.2, 3.3 and 3.4, respectively.

3.1. The observed radio beams of preces-

sional binary pulsars

It is known that binary pulsars may undergo
relativistic spin-precession due to coupling be-
tween the spin and orbital angular momenta
(Damour & Ruffini 1974, Barker & O’Connell
1975). As a result, the spin axis of the pulsar ro-
tates around the total angular momentum vector,
changing the viewing and impact angles. This ef-
fect enables us to “scan” the emission beam. So
far, efforts to construct the beam structure have
been been made for 6 pulsars, PSR B1913+16
(e.g. Weisberg & Taylor 2002), B1534+12 (e.g.
Arzoumanian 1995), PSR J1141−6545 (Manch-
ester et al. 2010), PSR J1906+0746 (Desvignes
et al. 2013), PSR J0737−3039A (Ferdman et
al. 2013, Perera et al. 2014) and J0737-3039B
(e.g. Perera et al. 2012, Lomiashvili & Lyutikov
2013). For half of them, PSR J1141−6545, PSR
J1906+0746 and PSR J0737−3039B, the two-
dimensional beam structures were constructed
with multi-epoch absolute flux density data, there-
fore they can be used to probe the models via
both the evolution of pulse width and the radial
distribution of emission intensity. But the magne-
tosphere of PSR J0737−3039B is distorted by the
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wind from its companion PSR J0737−3039A, it is
not an ideal case for model test. For the other 3
pulsars, the profile at each epoch is first normal-
ized by a pulse peak and then used to study the
profile evolution or construct the beam structure.
This method focuses on the evolution of relative
intensity of different pulse components rather than
the radial distribution of absolute intensity in the
pulse beam. Therefore, only the evolution of pulse
width is useful to test the fan beam model for these
3 pulsars. Below we first present the clear evidence
from PSR J1141−6545 and PSR J1906+0746, and
then discuss the remaining pulsars, which show
less prominent evidence.

PSR J1141−6545 is a young binary pulsar with
a precession rate 1.4 deg/yr. Manchester et al.
(2010) found that the average pulse profiles of this
pulsar show remarkable variation at 1.4 GHz be-
tween 1999 and 2008. In the first a couple of years
the profile was dominated by the trailing part.
The leading part grew stronger with time and later
became comparable with the trailing part, lead-
ing to a bump-shaped profile. Despite the profile
evolution, the pulse width at a very low intensity
level, e.g. 1% of the peak, is nearly constant. The
authors used a precessional beam model to fit the
pulse profile and the absolute central PPAs ob-
tained by fitting PPA data with the RVM. The
derived impact angles varied from about −3.7o in
1999 to −0.9o in 2007, meaning that the LOS was
moving towards the magnetic pole. With the data
of flux density, the two-dimensional beam inten-
sity structure was inferred, which shows that the
maximum intensity was reached when β ≃ −2o.
Beyond this angle, the intensity decreases as our
LOS goes further to the magnetic pole, while be-
low this angle, the intensity decreases as the LOS
moves towards the magnetic pole, as indicated by
two opposite arrows in the lower left panel of Fig.
16. The most striking feature is that the beam
is quite asymmetric and is partially filled without
any core or conal structure. Based on this point,
the authors concluded that the beam is patchy.

The twofold radial intensity distribution is gen-
erally consistent with our model. The observed
transition radius of intensity distribution, ρt ≃ 2o,
is close to the opening angle of the polar cap
ρpc ≃ 2o for this pulsar with a period of 0.394 s.
This suggests that the lowest coherent emission
altitude should be close to the polar cap. The

nearly constant pulse width does not conflict with
our model. We have discussed in Section 2.4 that
the pulse width near the transition radius may not
follow the same increasing trend with impact angle
as it does for the outer beam.

PSR J1906+0746 is a young binary pulsar with
a higher precession rate of 2.2 deg/yr. The radio
profile at 1.4 GHz has a narrow main pulse and
a weak interpulse, which are separated by about
180o. The PPA data are smooth, following a sim-
ple RVM (Desvignes 2009). The RVM Fitting at
each epoch revealed that α ≃ 81o while β varied
from 6.8o to about 11o between 2005 and 2009 for
the main pulse and from 11.2o to 7o for the inter-
pulse (Desvignes et al. 2013).

The derived beams for both poles show asym-
metric structures that are quite patchy. In both
of the beams, the intensity decrease as the LOS
moves away from the magnetic pole (see the lower
right panel of Fig. 16 for the main pulse). Since
the LOSs in both poles are much further from the
polar cap boundary (ρpc = 3.3o for P = 0.144 s),
this limb-darkening feature is consistent with the
radial intensity trend for the outer part of the fan
beam. The pulse width is nearly constant for the
main pulse, but not clear for the interpulse due
to poor signal to noise ratios4. The near constant
pulse width may be reflect the change of transverse
intensity distribution at different radius, suggest-
ing that the real physical process could be more
complicated than our assumptions.

It is worth noting that absence of emission in
the other parts along our LOS, e.g. the black point
A in the lower right panel of Fig. 16, which has
the same radius as the white point B in the bright
beam, is unlikely due to the limb-darkening effect.
We suggest that perhaps only one flux tube is ac-
tive in each pole for PSR J1906+0746, if there are
more, they must be far away from the median and
less active. As to PSR J1141−6545, two active
flux tubes seem to be responsible to the asymmet-
ric beam.

In order to compare with the observation, we
simulate the model beams with Model B2 for
PSR J1141−6545 and the main pulse of PSR

4Owing to decreasing flux density, it is difficult to measure
the pulse width for the interpulse at the same level, e.g.
10% of peak intensity, in all the epoches (Desvignes 2009,
Kasian 2012).
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J1906+0746, as shown by the upper panels in Fig.
16. The observational beams of PSR J1141−6545
and PSR J1906+0746, shown in the lower pan-
els, are taken from Manchester et al. (2010) and
Desvignes et al. (2013), respectively.

For PSR J1141−6545, two flux tubes are used
in the simulate. Both of them have χ0 = 0.7,
ℜ0 = 0.3 and the same peak multiplicity factors,
but with different central azimuths, viz. ϕ0,a = 0
and ϕ0,b = 35o, as indicated by a short and a
long white arrows in the left upper panel. The
multiplicity is assumed to follow the same two-
dimensional Gaussian distribution across the cross
section of both flux tubes. Another important dif-
ference is the radial limb-darkening index, which
is assumed to be δ = −4 for the flux tube at the
meridian plane and δ = −2 for the lateral one.
Although the simulated beam is not a satisfactory
reproduction to the observed beam, but the gen-
eral intensity structure is similar.

For the main pulse beam of PSR J1906+0746,
only one flux tube with χ0 = 0.7, ℜ0 = 0.3 and
ϕ0 = 40o is used in the simulation. The arrows in
the simulated and observed beams represent ap-
proximately the direction of radial intensity gra-
dient. The simulations presented here is for the
purpose of comparing the general intensity distri-
bution pattern between the simple models and ob-
servations. Some complex local structures in the
observed beams are not reproduced and require
detailed models.

PSR B1913+16 has a precession rate of 1.2
deg/yr. The radio pulse profile at 1.4 GHz consists
of double peaks and a shallow bridge. Although
the peak separation gradually decreases with time,
the pulse width measured at a level below 50%
peak intensity is roughly constant between 1981
and 2003 (Weisberg & Taylor 2005, Clifton &
Weisberg 2008). In fact, the pulse width at very
low intensity levels, e.g. below 10%, after keeping
constant for about 10 years, has undergone a sub-
tle increasing since 1992. Through fitting the pro-
files from 1981 to 2001 with a geometrical model
of precessing radio beam and comparing the slope
rate of PPA curve expected by the RVM and the
observed data, Weisberg & Taylor (2002) deter-
mined that the impact angle varied from about
−3.6o in 1981 to −6.6o in 2001. Combing with
the best-fit inclination angle α ∼ 158o, the neg-
ative β angles mean that our LOS was sweeping

across the beam between the magnetic pole and
the equatorial plane and was moving further from
the magnetic pole.

Obviously, a circular conal beam model can
not account for the constant and subtle increas-
ing trend of pulse width in such viewing geometry.
The authors proposed that the beam should be
elongated in the latitudinal direction and pinched
in longitude near the center, forming a hourglass-
shaped beam (Weisberg & Taylor 2002, Weisberg
& Taylor 2005, Clifton & Weisberg 2008), which
works well in modeling the historical data. Al-
though the subtle pulse broadening is not so signif-
icant as the above simple fan beam model predicts,
it is possible to be explained by taking into ac-
count some modifications, e.g. the aberration and
retardation effects, the rotating dipole field and in-
tensity modulation that may depend on emission
altitude and azimuth. The narrowing of peak sep-
aration and increasing bridge emission may also
be explained by this modified version if an ap-
propriate number of flux tubes, e.g. three (corre-
sponding to the leading, bridge and trailing com-
ponents), with different altitude-dependent inten-
sity distributions are assumed. We notice that the
current hour-glass model predicts decreasing pulse
width between 2003 and 2020 (Clifton & Weisberg
2008), then the data in near future is hopeful to
provide clear test for the hour-glass beam model
and our fan beam model. The other quick test is to
examine the evolution of flux density, if they exist
in previous observations. We didn’t find useful in-
formation on this respect, because the multi-epoch
profiles have been normalized before constructing
2-D beam maps in published papers.

PSR B1534+12, a 37.9−ms millisecond pulsar
(MSP) with broad main pulse and inter-pulse, lo-
cates in a binary system orbiting with another
neutron star (Wolszczan 1991). The most re-
cently measured precession rate is 0o.59/yr (Fon-
seca et al. 2014). The main pulse width of PSR
B1534+12 at 3% level of peak intensity is roughly
increasing at a rate of 0o.5 ∼ 1o per year as es-
timated from the profiles in Arzoumanian (1995)
and Stairs et al. (2000). This tendency of pro-
file broadening is confirmed by later observations
(Stairs et al. 2004, Fonseca et al. 2014), accom-
panied with a secular decreasing trend in intensity
of the central component with respect to the lead-
ing and trailing wings. The impact angle is con-
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Fig. 16.— The simulated and observed beams for PSR J1141−6545 (left panels) and the main pulse of PSR
J1906+0746 (right panels). Two flux tubes are used to model the beam of PSR J1141−6545 (left upper),
which have the same center coordinates, χ0 = 0.7 and ℜ0 = 0.3, and the same peak multiplicity factor, but
with different central azimuths, ϕ0,a = 0 and ϕ0,b = 35o (indicated by a short and a long white arrows,
respectively). The radial limb-darkening indices are different too, with δ = −4 for the left flux tube and
δ = −2 for the right one. The full range of intensity contours is of a factor of ∼16. For PSR J1906+0746,
only one flux tube with χ0 = 0.7, ℜ0 = 0.3, ϕ0 = 40o and δ = −2 is used in the simulation, as shown in the
upper right panel, where the arrow indicates the central azimuth of the flux tube. The arrow in the observed
beam (lower right panel) indicates the radial intensity gradient direction. The full range of intensity contours
is of a factor of ∼40. The observational beams of PSR J1141−6545 and PSR J1906+0746 are taken from
Manchester et al. (2010) and Desvignes et al. (2013). See Section 3.1 for details.
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strained by fitting the observed PPA with RVM,
which changed from about −3o.3 in 1993 to −6o.8
in 2009, indicating that the line of sight was mov-
ing away from the magnetic pole (Fonseca et al.
2014). The tendency that the main pulse width
increases with increasing impact angle (absolute
value) is generally consistent with our model. It
would be interesting to check whether the flux den-
sity decreases with time, as the fan beam model
predicts, but the flux density data were not pre-
sented in the above references due to normaliza-
tion of multi-epoch profiles.

PSR J0737−3039A, a 22.7−msMSP in the dou-
ble pulsar system, has a predicted precession rate
of 4o.8/yr (Burgay et al. 2003), which is compa-
rable to that of PSR J0737−3039B. However, the
multi-epoch pulse profiles of A were found to be
fairly stable (Manchester et al. 2005, Ferdman et
al. 2013), which is explained as a consequence
of very small misalignment between the pulsar
spin axis and the orbital momentum. The broad
main pulse and interpulse were modeled by cir-
cular cones, where the inclination angle was con-
strained to be nearly 90o and the two cones should
be originated from two opposite poles (Ferdman et
al. 2013, Perera et al. 2014). We would suggest
that the profile can be alternatively modeled by
the fan beam model. Since our line of sight is
stable for this pulsar, it is unable to distinguish
the beam models directly. Nevertheless, we notice
that PSR J0737−3039A and PSR B1534+12 have
some features similar to many other MSPs, e.g.
broad pulse width and complex profile shape. In
the coming paper II, we will discuss how the fan
beam model, in the context of emission flux tubes,
has advantages to explain these features for MSPs.

Through numerically modeling the distortion
of PSR J0737-3039B’s magnetosphere induced by
PSR J0737-3039A, Lomiashvili & Lyutikov (2013)
determined that the emission beam is horse-shoe
shaped, which is somewhat similar to the arc-
like structure derived by Perera et al. (2010,
2012), and the emission region is located at about
3750 stellar radius (∼ 30% light cylinder radius),
greater than the maximum altitude of 2500 stel-
lar radius given by Perera et al. (2012). Consid-
ering that the orbital-phase dependent distortion
of B’s magnetosphere may influence the intrinsic
emission beam structure, we choose to discard this
pulsar.

3.2. Statistical tests

In Section 2 we have derived two major rela-
tionships for the fan beam model, i.e. the radial
limb-darkening relationship and the W − |β| re-
lationship. A third relationship between the up-
per boundary of |β| and pulsar distance d will be
derived in this section. In order to test these
relationships, we collected a sample of pulsars
with known pseudo radio luminosity Lapp = Fνd

2,
pulse width W10, d and impact angle, where Fν is
the flux density at a particular frequency.

Unlike the other parameters, the impact angle
can not be directly measured. In literature, at
least four kinds of methods have been proposed to
constrain the impact and inclination angles. (1)
When a pulsar presents a smooth S−shaped PPA
curve, α and β can be obtained by fitting the PPA
data with the following relation given by the RVM,

tan(Ψ−Ψ0) = sinα sin(Φ− Φ0)[sin(α+ β) cosα

− cos(α+ β) sinα cos(Φ− Φ0)]
−1, (28)

where Ψ is the PPA, the subscript “0” denotes
the values at the phase where the slope rate of
PPA curve reaches its extremum. (2) The pa-
rameters can be constrained by fitting the pulse
width and some properties of subpulse drifting for
a few pulsars, e.g. the interval between succes-
sive sub-pulses in the same period. (3) For a few
binary pulsars with considerable precession rate,
the parameters can be derived by fitting the pro-
files and PPA variation in terms of a precession
model. (4) For gamma-ray pulsars, the parame-
ters can be constrained by fitting the radio and
gamma-ray profiles with gamma-ray emission and
radio conal beam models. In this paper, we pre-
fer to the first three geometrical methods to avoid
the dependence of emission models, and the re-
lated references can be found in Table 1.

We collected a sample of 64 normal pulsars5

from literature, of which the inclination and

5With a period of 59 ms and the surface magnetic field of
2.28× 1010 G, PSR B1913+16 locates between the majori-
ties of normal pulsars and MSPs in the P − Ṗ diagram.
In some literature, e.g. Kramer et al. (1998), it is clas-
sified as a MSP. In this paper, we adopt it in the sample
because its intermediate position in the P − Ṗ diagram.
Although we believe that the fan beam model should be
applicable to MSPs, we limit the model testing for normal
pulsars in this paper, because some factors in MSPs, e.g.
more efficient aberration effect in compact magnetosphere
and possibly complex magnetic field structure, can cause
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impact angles are derived with method (1) for
62 pulsars (including the binary pulsar PSR
J1906+0746) and with methods (2) or (3) for
the other 2 pulsars. A handful of pulsars that
have too large uncertainties for the impact angle
are not included. 12 pulsars in the sample have
interpulse emission, and hence contribute beam
information from double poles. Table 1 gives the
data for the total 76 beams. From the second
column are the inclination angle α, impact angle
β, frequencies at which α and β are derived (with
marked numbers for references), 10% peak pulse
widths W10 with uncertainties, pulse widths W 1

10

at lower frequencies and W 2
10 at higher frequen-

cies, pairs of frequencies at which W 1
10 and W 2

10

are measured, number of profile components Nc

that is identified by eye, pulsar period P , period
derivative Ṗ , pseudo luminosity at 400 MHz L400

and at 1400 MHz L1400, rotation energy loss rate
lg Ė and pulsar distance d.

For most pulsars, the uncertainty of pulse width
induced by frequency dependence of profiles is
larger than the observational error at a single fre-
quency. To count in this major error source, we
collected the pulse widths at two well separated
frequencies (W 1

10 and W 2
10), mostly at 0.4 MHz

and 1.6 MHz. The uncertainty is then figured out
by |W 2

10−W 1
10|/2. For those pulsars with only one

frequency observation in literature, we assume an
uncertainty of 10% for W10. The data in the last
six columns are taken from the ATNF Pulsar Cat-
alogue (Manchester et al. 1995).

3.2.1. Test of W − |β| relationship
According to Eq. (26), the pulse width depends

on α, β and the azimuthal width of a flux tube
∆ϕ = 2ϕ. These parameters are different for pul-
sars, causing dispersion of pulse widths. In or-
der to compare the model with observations, we
perform a Monte Carlo simulation by randomly
assigning α, β and ∆ϕ to a sample of ∼50,000
pulsars. It is assumed that the projection of mag-
netic pole is uniformly distributed in the celestial
sphere, then the probability density function of
inclination angle is P (α) = sinα/26. The prob-
ability density function of viewing angle is also

deviation from the current simple model, which should be
studied elsewhere.

6P (α) =
∫ 2π
0

(1/4π) sinαdΦ = sinα/2

assumed to be P (ζ) = sin ζ/2. ∆ϕ is assumed to
be uniformly distributed between ∆ϕ1 and ∆ϕ2,
where the boundaries are free parameters that can
be estimated by comparing the simulated results
with observational data.

Since we assume that the effective beam ra-
dius can be treated as ρb = 1 ∼ 2ρpc when the
LOS sweeps across the inner part of the fan beam,
the pulsar period will also affect the pulse width
through its influence on ρpc. We assume a lognor-
mal distribution for the pulse period, i.e.

p =
1

Pσ
√
2π

exp[− (lnP − µ)2

2σ2
], (29)

where p is the probability density function of pul-
sar period P . The best-fit parameters µ and σ are
obtained by fitting the ATNF data of pulsar pe-
riod longer than 50 ms, which are µ = −0.48 (cor-
responding to a peak period 0.62 s) and σ = 0.90.
The period is also randomly assigned to each pul-
sar together with the other three parameters.

Once a pulsar is assigned with a group of α,
ζ, P and ∆ϕ, the pulse width is calculated sepa-
rately for two circumstances: using Eq. (26) when
|β| = |ζ − α| > 2ρpc and fixing it as W = 2Φ
figured out by substituting the assigned α, beam
radius ρb = 2ρpc and ζ = α into Eq. (24) when
|β| ≤ 2ρpc. Selecting |β| = 2ρpc as the criterion to
separate the two circumstances and assuming the
beam radius as 2ρpc are phenomenological choices
to make the simulation generally coincides with
the lower boundary of the observed W10 for small
impact angles (see Fig. 17). But it can be reason-
ably explained in the context of fan beam model,
as will be shown below.

Given the other parameters, smaller inclina-
tion angles tend to produce wider profiles. To
avoid possible contamination of this effect, we di-
vide the sample into three groups with different
α, i.e. group A with α ≤ 30o, group B with
30o < α ≤ 60o and group C with 60o < α ≤ 90o.
The inclination angles in Table 1 that are larger
than 90o are converted to 180o − α before group-
ing, and the corresponding β are converted to −β.
Each group has more than a dozen of pulsars,
which are shown by the black dots in Fig. 17.
The simulated pulsars are also divided into three
groups and are plotted by the grey dots.

One can see clearly the twofoldW−|β| relation-
ship from the observed data in Fig 17: W is almost
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independent to |β| when |β| < 6 ∼ 8o, while it in-
creases with increasing |β| when |β| > 6 ∼ 8o.
When selecting ∆ϕ1 and ∆ϕ2 as 40o and 160o, re-
spectively, we find that the observed distribution
is well reproduced. For comparison, the W − |β|
relationships of Eq. (26) under various groups of
α and ϕ are plotted as dashed and dotted curves,
e.g. curve “1” for α = 5o and ϕ = 80o. Obviously,
such a simple equation only accounts for W − |β|
relationship for the outer beam.

These curves are helpful to understand why we
select |β| = 2ρpc as the criterion to distinguish
the outer beam and the inner beam and set the
effective beam radius as ρb = 2ρpc. We have tried
some other criteria but the simulations do not fit
the lower part of the observed data. For instance,
when selecting |β| = ρpc and ρb = ρpc, many simu-
lated data points extends along these curves down
to the small pulse width region, which is well below
the lower boundary of the observed data points.
When selecting |β| = 3ρpc and ρb = 3ρpc, the
lower boundary of simulated widths will be higher
than that of the observed data. That is the reason
why we made the final choices of 2ρpc. A possi-
ble interpretation is that, in the statistical sense,
the lowest coherent emission altitude may be a
few times of R so that the transition radius of
twofold intensity distribution is ρt ∼ 2ρpc, which
then leads to twofold W − |β| relationships sepa-
rated by |β| ∼ 2ρpc.

Two possible selection effects can be excluded
for the increasing W10 − |β| trend. First, we have
checked the data of W10 and pulsar period P . No
trend is found between these two parameters for
the sample, indicating that the increasing W10

trend is not induced by possible dependence of
pulsar period. Second, it is known that the incli-
nation and impact angles are hardly constrained
with the RVM fitting method for very narrow pro-
files, because the PPA curves for a number of α-
β pairs that produce the same maximum slope
rate k = sinα/ sinβ can be barely distinguished
in a very narrow phase interval around the flec-
tion point of PPA curve. Then one may suspect
whether this limitation can cause bias and hence
the observed trend can not be regarded as a ro-
bust evidence for the fan beam model. Especially
when one considers an opposite case that the pulse
width decreases with increasing |β| as predicted by
the conal beam model, this limitation might cause

the lack of samples with large impact angles (due
to narrow pulse widths) and would be unfavor-
able to test the prediction of conal beam model.
However, the limitation can be overcome by the
large phase separation between the main pulse and
interpulse when both of them are observed, even
though the pulses are narrow. For the 25 main
and interpulse beams in our sample (only the main
pulse width is measurable for PSR J1932+1059),
11 cases have |β| > 8o (6 with |β| ≥ 12o). With so
many large-impact-angle samples, no violation to
the increasing trend of W10 is observed, therefore,
this selection effect can be ruled out.

Finally, one may notice that the W − |β| re-
lationships predicted by Eqs. (26) and (27) are
actually different for positive and negative impact
angles for a given α and other parameters and the
difference grows with decreasing inclination angle,
as shown by the solid and dashed curves in Fig.
15. However, the predicted difference is not seen in
the distribution of current data in Fig. 17, where
the positive and negative impact angles are rep-
resented by black dots and open circles, respec-
tively. The reason is probably that the scatter
due to other parameters, e.g. α, ϕ or δ, overtakes
the difference caused by the sign of impact angle
(see the dashed curves in Fig. 17 for the scatter
induced by α and ϕ). Perhaps this difference can
only be tested for a large sample of pulsars.

3.2.2. Test of intensity-radius relationship

The observed mean flux density, F = FpeakWe/P ,
is a quantity averaged over the whole pulse period,
where Fpeak is the flux density at the maximum
peak of averaged pulse profile, We/P is the pulse
duty cycle. Combining with the pulsar distance
and other parameters, Fpeak can be converted to
the emission intensity Ipeak at ρpeak in the radio
beam, where ρpeak is the radius for the maximum
pulse peak. The fan beam model predicts that
such an intensity follows Ipeak ∝ ρ2q−6 in the
outer beam. Therefore, the derived intensity can
be used to test this intensity-radius relationship.

The peak flux at a frequency range ν ± ∆ν/2
can be converted to intensity by Ipeak,ν =
Fpeak,νd

2∆ν, namely Ipeak,ν = Fν(We/P )−1d2∆ν.
Using Eq. (10), we have

Ipeak,ν = AP q−4Ṗ cos2 α
(

f q−3
1 − f q−3

2

)

ρ2q−6
peak .
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Fig. 17.— The pulse width W10 and |β| for 76 beams from 64 pulsars (black dots) and the simulated data
points for ∼ 50, 000 pulsars with the fan beam model (gray dots). The data are divided into three groups:
α ≤ 30o, 30o < α ≤ 60o and 60o < α ≤ 90o, where the inclination angles larger than 90o in Table 1 are
converted to 180o−α. Black dots and open circles stand for positive and negative impact angles, respectively.
In the simulation, the half azimuthal widths of flux tubes are assumed to be uniformly distributed within
20o and 80o. The pulse width W is calculated with Eq. (26), except that in the case |β| ≤ 2ρpc, it is set as
a constant as if the LOS sweeps across an effective beam with radius of 2ρpc(see Section 3.2.1 for details).
The relationship of Eq. (26) is plotted by the dotted and dashed curves for several groups of inclination
angle and half azimuth width ϕ. For instance, the curve 1 (5o, 80o) stands for α = 5o and ϕ = 80o.
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In order to display the dependence of ρpeak clearly,
we defined an intensity indicator parameter

Y = Ipeak,νA
−1P 4−qṖ−1 cos−2 α(f q−3

1 − f q−3
2 )−1,

(30)
so that

Y = ρ2q−6
peak . (31)

Inserting Ipeak,ν into the above equation, there is

Y = Fνd
2(We/P )−1∆νA−1P 4−qṖ−1 cos−2 α(f q−3

1 −
f q−3
2 )−1, where Fνd

2 is the pseudo luminosity at
a particular frequency ν.

When trying to test the Y − ρpeak relationship,
it is better to use

Y = Kρ2q−6
peak . (32)

instead of Eq. (31) to fit data, where K is a co-
efficient to be constrained, because there are sev-
eral free parameters in Y , which may cause un-
certainties. These parameters include the bound-
aries of flux tube f1 and f2, index q, multiplicity
M , stellar radius R and emission power of a sin-
gle particle ie0. In the following calculation we
take M = 103, R = 106 cm, ie0 = 10−15 erg/s,
f1 = 1 and f2 = 100. In fact, choosing different
values does not affect the power-law index and the
Iouter − ρpeak relationships recovered later.

The pseudo luminosity L400 = F400d
2 and

L1400 = F1400d
2 at 400 MHz and 1400 MHz

are taken from the ATNF pulsar catalogue, the
frequency range ∆ν is set as 100 MHz and
500 MHz, respectively. We/P is simply replaced
by W10/360

o, which may introduce an maximum
uncertainty by a factor around 2 or 3 (see data in
Gould & Lyne 1998). However, this uncertainty
is much smaller than the uncertainties caused by
the free parameters. Notice that cosα ∼ 0 when
α ∼ 90o, which means that the net charge number
density ngj0 ∼ 0 and hence n0 = Mngj0 ∼ 0 on
the polar cap surface. We believe that the real
secondary particle density of orthogonal rotators
should be much higher than this and may be com-
parable to other cases with moderate and small α,
therefore, we simply replace the correction term
cos−2 α by a factor of 1.

Finally, the free parameter q needs special
treatment, because it affects both sides of Eq.
(32). We let it vary from -3 to 3 by a very small
step size7. Given a q value, Y is calculated for

7q = 3 means a particular case that the emission power of

individual pulsars, and the least square fitting is
applied to the Y and ρpeak data to find a best
fit index δ for the relationship Y ∝ ρδpeak. If the
relationship of Eq. (32) does apply to the sam-
ple, there should be a q satisfying 2q − 6 = δ.
Therefore, the fitting process is repeated for the
whole range of q to search for the solution. Be-
cause Eq. (32) is only valid for the outer beam, in
the following test the pulsars with |β| 6 2ρpc are
excluded.

When calculating ρpeak with the peak pulse
phase Φpeak, we have considered the effect of pro-
file shape on Φpeak. The peak phases are set as
Φpeak ≃ W10/4, 3W10/8 and 5W10/12 for profiles
with double, quadruple and sextuple components,
where the profile center is always assumed to have
Φ = 0. While the component number is odd, we
simply assume that the maximum peak occurs at
the profile center. Then ρpeak is figured out with
Eq. (24) for each pulsar. The number of com-
ponent, as listed in Table 1 by the column Nc, is
identified by eye for each pulsar according to its
multi-frequency profile shapes whenever they are
available in literature.

The right panels of Fig. 18 shows the modeled
index 2q−6 and the fitted index δ as a function of
q when the fitting process is applied to 400 MHz
and 1400 MHz data, respectively. The intersec-
tions give the solution q = 1.5 for 400 MHz and
q = 1.75 for 1400 MHz. The left panels of Fig.
18 present the Y −ρpeak diagrams when the above
solutions of q are adopted. Despite the consider-
able scattering, the data show a trend that the in-
tensity decrease when LOS becomes further from
the beam center. The best fit limb-darkening rela-
tionship obtained with the Levenberg-Marquardt
method is Y = 10−1.6±1.4ρ−3.0±1.5

peak for 400 MHz

and Y = 10−1.7±1.5ρ−2.5±1.5
peak for 1400 MHz at

the 95% confidence level, respectively. Combining
with the results for 400 MHz and 1400 MHz, we
have an approximate limb-darkening relationship
Iout ∝ ρ−(2.8±1.8), with the index q ≃ 1.6± 0.9.

Using the best fit Y − ρpeak relationships, we
can recover the Iouter − ρpeak relationships with
the following equation

Iouter = Y A(f q−3
1 − f q−3

2 )∆ν−1
MHzP

q−4Ṗ−1510
−15,

single particle rises so effectively with increasing altitude
that it just cancels the effect of density attenuation and
eventually leads to constant intensity in the beam.
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where Iouter is in unit of erg/s/MHz/sr, P is in
unit of seconds, ρpeak in unit of degrees, Ṗ−15 =

Ṗ /(10−15s/s), ∆νMHz = 100 and 500 for 400 MHz
and 1400 MHz, respectively. Substituting into the
above parameters, we have

I400MHz
outer = 1027.2±1.4P−2.50±0.75Ṗ−15ρ

−3.0±1.5
peak

erg/s/MHz/sr, (33)

and

I1400MHz
outer = 1025.7±1.5P−2.25±0.75Ṗ−15ρ

−2.5±1.5
peak

erg/s/MHz/sr. (34)

Although the above Iouter stands for the inten-
sity at ρ = ρpeak in the emission beam, it is reason-
able to believe that these empirical relationships,
in the statistical sense, can be used to describe the
radial limb-darkening relationship for pulsar radio
beams.

3.2.3. Impact angle vs. pulsar distance

Given an observing sensitivity, luminous pul-
sars have more chance to be detected at large dis-
tances. According to the radial limb-darkening re-
lation in our model, a higher luminosity requires
a smaller impact angle. Then, for a sample of
pulsars, the upper limit of impact angle should
decrease with pulsar distance. In the nearby re-
gion to the earth, less luminous pulsars may still
reach the sensitivity, thus the impact angles are
expected to be more scattered than in further re-
gions.

To find out the relation between the distance d
and |β|, let us assume a fixed minimum detectable
flux density Smin = Cs

√

W/(P −W ) (Lorimer &
Kramer 2005), where W is the equivalent pulse
width, Cs is a constant determined by some ob-
servational parameters, such as bandwidth, total
integration time, etc. The corresponding peak
flux density is Speak = SminP/W ≃ Cs

√

P/W
when P − W ≃ P . In the fan beam model, an
intensity Imin ∝ |β|δmax would be detectable if
Speak ∼ Imin/d

2. This leads to

|β| ∝ C2/(1+2δ)
s d4/(1+2δ), (35)

if we use W ∝ |β| (a viable approximation to Eqs.
(26) and (27), see Fig. 15).

Using the ATNF data of distance, we plot the
|β| − d diagram for the sample (Fig. 19). It does

show that the impact angles are less scattered at
larger distances and the upper boundary of |β|
decreases with distance until ∼15 kpc, where no
more pulsars exist in the sample. The sparse data
points at d < 1 kpc is probably due to imcom-
pleteness of the data set, but it does not affect the
trend of upper limit. To compare the above rela-
tionship with the data, we plot two |β| − d curves
with δ = −2.0 and −3.5, which corresponds to
|β| ∝ d−1.3 (dashed) and |β| ∝ d−0.7 (solid) re-
spectively. |β| is restricted within 90o, because a
β larger than 90o means viewing into the other
pole and it can be replaced by its supplementary
angle. Therefore the theoretical upper bound-
ary at small distances are replaced by |β| = 90o.
As shown in the figure, the data points are all
placed under these boundary lines, and the radial
limb-darkening relationship with δ ∼ −3 generally
matches the upper boundary of the data.

In order to examine if this consistency can ex-
tend to a larger distance, we have reviewed the
currently known most distant pulsars in the Mag-
ellanic Clouds. Unfortunately, there is little polar-
ization observation for these weak sources. But it
was found that their pulse profiles are much nar-
rower than those of Galactic pulsars (e.g. Manch-
ester et al. 2006). This is a sign of small im-
pact angle, if we believe that these two popula-
tions follow the same physics. We estimated W10

for all the 21 normal pulsars in the Large Magel-
lanic Cloud (LMC)8 and the 5 normal pulsars in
the Small Magellanic Cloud (SMC) using the pub-
lished profiles (McConnell et al. 1991, Crawford
et al. 2001a, Manchester et al. 2006, Ridley et al.
2013). For a few pulsar with the signal to noise
ratio lower than 10, the lowest level pulse width is
measured. The W10 of LMC pulsars varies from
6o to 45o, with only 4 larger than 22o. The av-
eraged W10 is 15o for the 17 small-width pulsars
and 20o for all the 21 pulsars. The W10 of SMC
pulsars varies from 11o to 22o, with an average
value about 15o. These are considerably smaller
than the averaged W10 of 27o of our sample. As
shown by the data points in Fig. 17, most pul-
sars with W10 ≤ 20o have |β| ≤ 10o, therefore, if
there is no difference in the statistical property of
emission beam between MC and Galactic popula-

8Two other pulsars with periods of 16ms and 50ms are not
included.
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Fig. 18.— Left: Y − ρpk diagram. The intensity indicator Y , obtained by correcting the ATNF data of
S400d

2 and S1400d
2 with Eq. (30), is expected to be a power-law of the radius ρpk that corresponds to the

maximum pulse peak, i.e. Y ∝ ρδpk. To avoid being contaminated by the data for the inner beam, which may
follow a reverse intensity-radius relation, only the data with |β| > 2ρpc are selected. The best fit relationship
has an index −3.0± 1.5 for 400 MHz data and −2.5 ± 1.5 for 1400 MHz data at the 95% confidence level.
The solid and dashed lines represent the best-fit and the boundary relationships. Right: the best-fit index δ
and modeled index 2q − 6 versus q, with the upper for 400 MHz and the lower for 1400 MHz, respectively.
The intersections are the solutions of q. See Section 3.2.2 for details.
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tions, it can be inferred that most LMC and SMC
pulsars have impact angles |β| ≤ 10o. As to the 4
LMC pulsars with larger W10, they may also have
small impact angles if the inclination angle is not
too large, say α < 60o (see the upper two panels
in Fig. 17).

The expected range of impact angles are plotted
in Fig. 19 with two short lines at d = 50kpc for
LMC (Pietrzyński et al. 2013) and d = 60kpc for
SMC (Hilditch et al. 2005). Again, the combined
upper boundary of Galactic and MC samples is
consistent with the limb-darkening relation with
the index around −3.

Some other effects may influence the |β|−d dis-
tribution, but they can not account for the trend
of the upper boundary lines. The following analy-
sis will strengthen the conclusion that the impact-
angle-distance upper boundary line is evidence to
our model.

(1) Given the luminosity and pulsar distance, a
narrow pulse profile is easier to be detected than a
wide pulse profile. To estimate the impact of this
selection effect quantitatively, one has to assume
relationship between pulse width and impact an-
gle. A possible estimation can be made as follows.
Given a sensitivity Smin = Cs

√

W/(P −W ), a
pulsar with luminosity L will be detectable at
d when its flux density is comparable to Smin,
namely, L/d2 ∼ Smin. A simple derivation leads
to W ∝ d−4. If still using the approximation in
the fan beam model, W ∝ |β|, we would have
|β| ∝ d−4, which is too steep to account for the
flat upper boundary line in the |β| − d diagram.
In order to account for the apparent power law in-
dex of the upper boundary line (∼ −1), one has
to assume W ∝ |β|∼4, which is not reliable.

(2) The disparity in sensitivity in different pul-
sar searching projects is unlikely to cause severe
bias to the upper boundary line. For example, the
limiting sensitivity is 0.14 mJy for Parkes multi-
beam survey (PMS, Manchester et al. 2001) and
0.08 mJy for 5% duty cycle for the survey of MC
pulsars (Manchester et al. 2006). This difference
can be denoted as Cs,MC/Cs,PMS = 4/7. Using
Eq. (35), the sensitivity of 0.08 mJy causes an
increment of |β| by about 45% (or 25%) for MC
pulsars compared with the |β| estimated with the
sensitivity of 0.14 mJy, if δ = −2 (or -3) is used.
Such an increment does not deviate much from the
upper boundary line in Fig. 19.

(3) Although the pulsar period is not written
in Eq. (35), it does affect that relationship in
our model. However, no statistically distinction
is found for P in all the distance ranges, including
the MC pulsars. Therefore, the effect of P should
be trivial.

4. Tests for the conal beam models

The conal beam model has two categories: the
canonical and patchy conal beam models. A
canonical conal beam consists of one or more
hollow cones and a core component. The shape
of cones is circular or elliptical, and the cone is
fully filled with emission. In the patchy conal
beam models, cones are assumed to consist of
some separated luminous spots, but the global
conal structure is still recognizable (e.g. Rankin
1993, Karastergiou & Johnston 2007). The global
conal structure is obviously inconsistent with the
very patchy beam patterns observed for PSR
J1141−6546 and PSR J1906+0746. But are these
two pulsars just minority outliers? Is the conal
beam model still general for radio pulsars? Below
we make statistical tests for the conal beam mod-
els based on the sample of 64 pulsars, similar to
those have been done for the fan beam model.

Given a circular or an elliptical conal beam with
a fixed beam width, the canonical conal beam
model predicts that a larger impact angle leads
to a narrower pulse width. Although pulsars may
have different beam radii, but this trend should
still exist for a sample of pulsars. In order to
compare with the data and the model prediction,
we also simulate a sample of ∼ 50, 000 pulsars to
check the pulse width distribution as predicted by
the conal beam model.

The procedure is very similar to the simula-
tion in Section 3.2.1 except the treatment of pulse
width. Firstly, we randomly assign the param-
eters α, β and the cone radius ρ to each pulsar,
and then calculate Φ with Eq. (24). The the pulse
width then reads W = 2Φ. Assuming a uniform
distribution for ρ, we found that the range of ρ
needs to be within 3o and 50o to match the range
of observed pulse widths.

Fig. 20 shows the W − |β| diagram for the sim-
ulated and observed data. The plot is made in lin-
ear scale for clarity. The modeled W − |β| curves
calculated with Eq. (24) for groups of α and ρ
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are also displayed. Obviously, the modeled curves
show an opposite trend against the observed data.
A striking discrepancy in the distributions of sim-
ulated and observed data can be seen in the left
upper region of each panel. The selection effect
of lack of data for small impact angles can be ex-
cluded, because in fact more data points in our
sample are located in the small impact angle re-
gion than in the large impact angle region. There-
fore, this discrepancy is definitely caused by the
widening nature of pulse width at small impact
angles in the conal beam model.

In the canonical conal beam model, the emis-
sion intensity could be either uniformly or ran-
domly distributed in the cone, anyhow, it is in-
dependent to the impact angle. Since there is no
predicted relationship between intensity and β for
conal beam models, we can not do further tests on
this respect.

Besides the W − β relationship, the upper
boundary relationship between |β| and d can also
be used to test the model. Since the pulse width is
anticorrelated with |β| in the conal beam model,
we use an approximation W ∝ |β|a for this rela-
tionship, where a < 0. Given a limiting sensitivity
Smin ∝

√

W/(P −W ), following the derivation in
the paragraph of point (1) in Section 3.2.3, one has
a upper boundary line |β| ∝ d−4/a. Since a < 0,
the index will be −4/a > 0. However, this is com-
pletely opposite to the apparent trend in Fig. 19.

To summarize, the canonical conal beam model
are disfavored by the above two statistical tests
and the patchy beams of two precessional pulsars.
From geometrical view of point, in order to meet
the observed W − |β| trend, one may modify the
beam shape by compressing the beam transver-
sally at small impact angles while stretching it at
large impact angles. A possible scenario will be
presented in Section 5.

Since the global structure of patchy conal beam
models is still conal, it will meet the same prob-
lems as the canonical conal beam model when
trying to interpret the statistical relationships.
Therefore, we will not discuss this type of mod-
els further.

5. On a patchy beam model with narrow-

band assumption

We notice that an extreme case of patchy conal
beam model associated with narrowband assump-
tion, which has not been explored critically be-
fore, can generate a patchy beam pattern similar
to those of binary pulsars. In this model, only one
or a few flux tubes is active, where the emission
is narrowband, i.e. a single frequency is mapped
to a single altitude. A major distinction of this
model from the other conal beam models lies that
different parts of the patchy beam come from dif-
ferent layers of open field lines, and so does the
leading or trailing beam boundary; while in tra-
ditional conal beam models, the boundary of the
outermost conal beam is normally assumed to be
confined by the last open field lines. This new
model can account for the observed patchy beams
and the statistically relationships, under a very
particular assumption for the shape of flux tubes.
However, it has big problems to explain the other
phenomena, which will be discussed later in this
section, therefore it is unlikely a general model for
radio pulsars.

In order to explain the observed beam pattern
of PSR J1141−6545, one has to assume an extreme
case that the active emission originates from one
(or maybe two) flux tube, therefore only one (or
maybe two) spot is bright in the beam. Under the
assumption of narrowband emission, the emission
in the inner part of the beam must come from more
interior filed lines (Fig. 21(a) and (b)). To account
for the elongated beam of PSR J1141−6545, the
innermost emission at β = 0.9o should come from
field lines very close to the magnetic pole, while
the outermost emission at β = 3.7o should come
from outer field lines, but not necessary the last
open field lines, because the mildly intensity gradi-
ent implies that fainter emission probably exist out
of the currently observed beam boundary, which
should come from even outer open field lines. If
we assume that the intensity is directly related to
particle density, the observed intensity distribu-
tion requires a peak particle density at a partic-
ular layer of field lines close to the magnetic pole
with a density gradient towards both the last open
field lines and the magnetic pole. A similar sce-
nario is required to account for the beam of PSR
J1906+0746.
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Fig. 20.— The pulse width W10 and |β| for 76 beams from 64 pulsars (black dots) and the simulated data for
∼ 50, 000 pulsars with the canonical conal beam model (gray dots). In the simulation, the radii of circular
beam of pulsars are assumed to be uniformly distributed within 3o and 50o. The pulse width W is calculated
with Eq. (24), where W = 2Φ. The relationship of Eq. (24) is plotted by the dotted and dashed curves for
several groups of inclination angle and beam radius. For instance, the curve 1 (30o, 3o) stands for α = 30o

and ρ = 3o. See Section 4 for details.

38



If the above scenario is a general model for pul-
sar radio beam, the cross section of the active flux
tube on the polar cap should have a sector-like
shape (similar to Model A in Section 2.4), namely,
the azimuthal scale of any equi-colatitude layer of
field lines is nearly constant, otherwise the posi-
tive correlation between the W10 and |β| can not
be reproduced (see Fig. 21(b) and (c) for the il-
lustration)9. However, such a model has to face
the following challenges.

(1) The shape of the cross section of flux tube
where pair cascades develop is not consistent with
either the shape of cascade regions in the space-
charge-limited-flow model (e.g. Figs. 2 and 5 in
Harding & Muslimov 2011) or the shape of sparks
in the inner vacuum (or partially screened) gap
model (eg. Fig. 1 in GS00). Note that the sector-
shaped cross section is required to reproduce the
W − |β| relationship. As a comparison, in the
fan beam model with broadband assumption, that
relationship is a naturally result of the divergence
of dipolar flux tube rather than an outcome of
flux tube shape; so we do not need some unusual
assumption on the shape of flux tubes.

(2) It can not explain the pulse width narrow-
ing with increasing frequency by using the RFM,
as done by conventional conal beam models. This
is because the lateral boundary of the extreme
patchy beam is no longer confined by a single layer
of open field lines, such as the last open field lines
as usually assumed by the canonical conal beam
model, but is composed of a set of open field lines,
from the last open to the allowed innermost ones
(see Fig. 21(a)-(c)).

This point can be explained with Fig. 21(c),
(d) and the inset. In the inset, the point 3, origi-
nally observed at a low frequency fL and located
at the field line 3 in panel (c) (represented by its
footpoint on the polar cap), will be missed by the
LOS at a high frequency fH, because the high fre-
quency emission is assumed to be generated at a

9A more common assumption is that the cross section of a
flux tube is circular. In the case of narrowband emission,
a flux tube will form a quasi-circular beam. This picture
can be regarded as an extreme case of patchy conal beam,
namely, only one spotty structure is active in the cone.
However, it has a problem to account for the W10−|β| dis-
tribution, because there will always be considerable chance
for the LOS to sweep near the edge of the beam, which will
results in very narrow pulse width, no matter how large the
beam size and the impact angle are.

lower altitude. Instead, the point 4 from an outer
field line at a lower altitude (shown in both the
inset and panel (c)) will be viewed by the LOS
at fH. Since the azimuth scale the cross section
of flux tube is nearly constant due to its sector-
like shape, the replacement of point 3 by point 4
does not change the beam width along the LOS
(see panel (d)), thus the pulse width stays con-
stant. Slight deviation from sector-like shape will
lead to slightly frequency-dependent pulse width,
but this scenario certainly can not account for the
variety in the high-frequency pulse narrowing phe-
nomenon, and not for the pulse broadening as well.

(3) Since the emission altitude at one frequency
is fixed, the outer boundary of the patchy beam
is confined by the outermost open field lines.
This feature is common to the beam models with
narrowband assumption. Therefore, such an ex-
tremely patchy beam model has the same limita-
tion as the the conal beam models in explaining
the phenomena of precursor, postcursor and off-
pulse emission.

With the above arguments, we suggest that this
patchy beam model, based on the assumption of
narrowband emission from one or a few flux tubes,
are unlikely to be a general model for radio pul-
sars.

6. Conclusions and discussions

We propose a new radio beam model based on
the assumptions that the emission from secondary
relativistic particles streaming along a flux tube
is broadband and coherent. Under a set of ba-
sic assumptions on the dipolar magnetic field, the
free flow of secondary particles and emission mech-
anisms/propagation effects, we demonstrate that
the collective emission from a number of coherent
volumes produces an emission beam pattern with
the following features.

• A flux tube forms a radially extended sub-
beam. Starting from the innermost bound-
ary of the sub-beam, the emission intensity
increases with increasing beam radius until a
transition radius near the polar cap bound-
ary, and then keeps decreasing outwards.

• A Gaussian distribution of particle number
density across the cross section of a flux tube
leads to a transverse Gaussian distribution
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Fig. 21.— The cartoon for a patchy beam model with the assumption of narrowband emission. (a) Open
field lines in the meridian plane, where emissions at a single frequency come from the same altitude (dashed
curve). (b) The patchy beam (dark) at a single frequency. The dashed curves stand for the lines of sight
with different impact angles, LOS1 and LOS2, which see the emissions from outer field lines (e.g. 1 in panel
(a)) and inner field lines (e.g. 2), respectively. The light grey annulus represents the global conal structure
for a reference. With this presumed beam shape, the pulse width for LOS1, W1, is smaller than that for
LOS2, W2. This is consistent with the statistical W10 − |β| relationship. To form such a beam shape, the
cross section of the flux tube needs to be sector-shaped, as shown by the hatched region in panel (c). Panels
(c) and (d) illustrate the frequency evolution of the beam, where the low frequency fL is assumed to be
generated at a high altitude while the high frequency fH at a low altitude (see the inset), and the LOS is
fixed (panel (d)). The dashed curves in panel (c) stand for the foot points of those field lines viewed by the
LOS at different frequency, with “3” for fL and “4” for fH. The inset represents the field lines in the left-side
lateral boundary of the flux tube (thick line in panel (c)). Points “3” and “4” have the emission direction,
but they can only be observed by the LOS at different frequency. (d) The patchy beam at fL (dark region)
will shrink radially as frequency increases. The high frequency beam for fH is presented by a region with
solid boundary. However, because of the sector-shaped cross section of flux tube, the lateral boundaries of
the patchy beam do not change with frequency. Therefore, the pulse width seen by the LOS keeps constant.
As a comparison, in the framework of conal beam model, the conal beam boundary (dashed circles) shrinks
with increasing frequency so that the LOS will see a pulse profile narrowing.
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of emission intensity across the sub-beam.

• The transverse width of the sub-beam in-
creases with radius due to the divergence
nature of flux tube in the dipolar magnetic
field. The whole radio beam may consist of
a handful of sub-beams, forming a fan-like,
limb-darkening beam pattern.

• When a very limited number of flux tubes,
e.g. one or two, are active in emission, the
beam becomes very patchy.

The fan beam model is different from the conal
beam and patchy beam models in several respects,
including the beam structure and predictions. Be-
sides the shape of sub structures in the beams,
another important difference is that the fan beam
has no boundary while the conal and patchy beams
have a circular or an elliptical boundary. The
fan beam model predicts that the pulse width in-
creases with increasing impact angle (the absolute
value) in the outer part of radio beam (may differs
in the inner part), while the conal beam models
predict the opposite trend.

The observational evidence for the fan beam
model comes from both individual sources and sta-
tistical relationships.

• The limb-darkening patchy beams derived
from long-term observations for two preces-
sional binary pulsars, PSR J1141−6545 and
J1906+0746, provide direct and strong evi-
dence.

• We have compiled a sample of 64 pulsars
with known impact angles, which are mostly
constrained by the method of fitting the po-
larization position angle data with the RVM.
Since 12 pulsars have interpulses, there are
totally 76 groups of data. It is found that re-
lationship between the 10% peak pulse width
W10 and the absolute value of impact angle
|β| is twofold: a constant trend for small |β|
plus an increasing trend for large |β|, which
is consistent with the W − |β| relationship
predicted by the model.

• The derived emission intensity for the sam-
ple show an anti-correlation with ρpeak, the
beam radius of the maximum pulse peak,
which is consistent with the radial limb-
darkening relationship, i.e. the decreasing

intensity-radius relationship, in the outer
part of fan beam.

• The upper boundary in the scatter plot of
pulsar distance and |β| shows that we tend
to see pulsars with smaller impact angles at
larger distances. This can be well repro-
duced by the radial limb-darkening relation-
ship of the model.

We also tested conal beam models with the ob-
servational facts. Besides the difficulty in explain-
ing the patchy beams of two binary pulsars, it
is found that the statistical relationships disfavor
both the canonical and patchy conal beam models.
A patchy beam model based on the assumption of
narrowband emission from a few flux tubes is also
investigated and found to be unlikely a general
model for radio pulsars.

Although the statistical relationships found for
a sample of 64 pulsars disfavor conal beam mod-
els, we can not completely exclude the possibility
that conal beam models, or in a broader sense,
narrowband emission models may work for some
pulsars. If they were mixed into our sample, their
|β| must happen to be considerably smaller than
their beam radii, otherwise they would have vio-
lated the W − |β| trend in Fig. 17. From this
point, we can infer that their percentage must be
low. Future tests with larger samples will help to
constrain the upper limit of the fraction.

We are aware that the current simple model
has its limitation in several respects. (i) The dis-
tortion of static dipolar magnetic field, aberration
and retardation effects are not taken into consider-
ation. If they are included, the shape of sub-beam
for a flux tube would be distorted at large radii.
Numerical simulation will be helpful to quanti-
tatively study the impacts of these effects. (ii)
We notice that the beams of PSR J1141−6545
and J1906+0746 reveal some features that are not
well reproduced by the simple version of fan-beam
model, suggesting that the configuration of flux
tubes and the distribution of limb-darkening index
may be more complex than what we have assumed.
More efforts are needed to model these individual
beams. (iii) The empirical index q, as constrained
to be within 0.7 and 2.5 by fitting the intensity
data, requires physical explanation. These issues
will be studied in subsequent papers. In the com-
ing paper of this series, Paper II, we will focus on

41



the configuration of flux tubes and the interpre-
tation for a variety of observational properties of
radio pulse profile.

Our model has implication to population stud-
ies on both radio and gamma-ray pulsars. In pre-
vious works, on one hand, the empirical relations
of radio luminosity, e.g. L = L0P

aṖ b (Arzouma-
nian et al. 2002, Gonthier et al. 2004, Story et al.
2007), or the luminosity function constrained from
the observed flux densities and distances of radio
pulsars (e.g. Chennamangalam et al. 2013), do
not include the dependence of luminosity on the
impact angle. On the other hand, the pulse width
or beam radius is normally assumed to follow en
empirical relation, W = W0P

−1/2 or ρ = ρ0P
−1/2

(Smits et al. 2009, Watters et al. 2009, Pier-
battista et al. 2012, Perera et al. 2013), which
is based on the concept of circular beam. When
the above relationships are replaced by the ra-
dial limb-darkening intensity distribution and the
W − |β| relationship of the fan beam model, re-
sults will be different. We have presented the sta-
tistical relationship for the intensity (Eqs. (33)
and (34)) and the approach to simulate the pulse
width in our model. In general, the feature of ex-
tended beam will enhance the detection rate of
radio pulsars, while the radial limb-darkening ef-
fect will reduce it. The final result depends on
the competition of these two factors. Another re-
lated issue is the viewing geometry of radio-aloud
gamma ray pulsars. Recent simulations with the
conal radio beam model and the two-pole caus-
tic (or outer gap) gamma-ray model show that
radio-loud gamma-ray pulsars tend to have large
inclination angles (Watters et al. 2009). How-
ever, with the radio fan beam model, gamma-ray
pulsars with small inclination angles can still be
radio-loud. This can be tested by future observa-
tions with high radio sensitivity.

In the fan beam model, we have suggested that
remarkable disparity in secondary particle density
probably exists among flux tubes. The density in-
homogeneity may be helpful to understand the di-
versity of PPA swing for radio pulsars. The parti-
cle density plays an important role in propagation
effects, which can dramatically affect the polar-
ization behavior of pulsar emission. It was found
that the PPA curve may maintain the RVM shape
at low particle multiplicities (e.g. M < 100) but
deviate drastically from the RVM shape at much

higher multiplicities (Wang et al. 2010, Andrianov
& Beskin 2010, Beskin & Philippov 2012). In pre-
vious researches the particle density distribution
is normally assumed to be symmetrical around
the magnetic pole for the purpose of simplifica-
tion. However, this is probably not true. As per
the suggestion that the polarization is formed at
a distance r ∼ 1000 stellar radius for a pulsar pe-
riod of 1 s (Wang et al. 2010, Beskin & Philippov
2012), if only a few flux tubes near the meridian
plane have high particle densities, the emission
generated therein will propagate through other
low-density flux tubes in the polarization forma-
tion region after the pulsar rotates for a long time
∆t = r/c (compared with the short duration of
pulse window). Therefore, the simple RVM-type
PPA curve may still survive. On the contrary, if
a lateral flux tube met by the waves in the for-
mation region has a high density, the resultant
PPA curve may deviate from the RVM shape sig-
nificantly. Although other parameters, e.g. the
Lorentz factor of secondary particles and the ini-
tial emission altitude, also affect the polarization
behavior, we believe that involving the inhomo-
geneity in flux tubes will be helpful to understand
the polarization properties better. Anyway, the
presumed lateral flux tubes, no matter with low
or high particle density, need to be tested by fu-
ture observations with high sensitivity.
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pole. The two vertical lines at the right hand stand
for the expected |β| range for the known pulsars in
the Large (black line) and Small (gray line) Mag-
ellanic Clouds.
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Table 1

Parameters of pulsars

PSR J Name α β Freq. W10 W 1
10 W 2

10 Freq. Nc P lg Ṗ L400 L1400 lg Ė d
(o) (o) (GHz) (o) (o) (o) (GHz) (s) (s/s) (mJy· kpc2) (mJy· kpc2) (erg/s) (kpc)

0034−0721a 3 ± 1 3 ± 1 1.17 1 43.2 ± 2.3 40.9 2 45.4 2 0.4/1.4 2 0.943 -15.39 55.17 11.67 31.28 1.03
0133−6957 80 ± 90 −3.0 ± 0.5 0.66 3 13.0 ± 1.3 13.0 3 0.66 2 0.464 -15.92 29.28 31.68 2.42
0134−2937 14 ± 3 14.0 ± 0.9 0.44 3 24.0 ± 6.0 30.0 3 17.9 4 0.44/1.4 2 0.137 -16.11 28.52 7.60 33.08 1.78

0248+6021 46+64
−21 6.0+2.3

−2.5 2.10 5 19.0 ± 2.0 19.0 5 2.10 1 0.217 -13.26 54.80 35.32 2.00

0304+1932 162.4 ± 11.8 0.96 ± 0.63 1.42 6 17.3 ± 1.6 18.9 2 15.7 2 0.4/1.6 2 1.388 -14.89 24.37 2.71 31.28 0.95

0332+5434 51 ± 28 −4+3
−2 0.41 7 25.4 ± 0.7 26.0 2 24.7 2 0.4/1.6 3 0.715 -14.69 1500.00 203.00 32.35 1.00

0528+2200 116.8 ± 4.6 −1.50 ± 0.08 1.42 6 19.8 ± 1.0 20.8 2 18.8 2 0.4/1.6 2 3.746 -13.40 296.31 46.79 31.48 2.28
0540−7125 42 ± 16 −1.2 ± 0.2 0.43 3 14.0 ± 1.4 14.0 3 0.43 4 1.286 -15.09 36.18 31.18 2.69
0627+0706m 86 ± 0.2 8.7 ± 0.3 1.40 8 7.1 ± 0.7 7.1 8 1.40 2 0.476 -13.53 234.46 130.92 34.04 7.88
0627+0706i 94 ± 0.3 0.7 ± 0.1 1.40 8 14.4 ± 1.4 14.4 8 1.40 2 0.476 -13.53 138.11 48.53 34.04 7.88

0630−2834 70 ± 50 −12+9
−2 1.41 9 35.8 ± 2.4 38.2 2 33.4 2 0.4/1.6 1 1.244 -14.15 21.09 2.36 32.18 0.32

0659+1414 29 ± 23 8.9 ± 6.1 1.42 6 36.5 ± 5.8 42.2 2 30.5 2 0.4/1.6 1 0.385 -13.26 0.51 0.29 34.58 0.28
0738−4042 62 13 0.69 10 37.6 ± 4.7 42.3 10 32.9 10 0.69/3.1 3 0.375 -14.79 486.40 204.80 33.08 1.60

0814+7429b 8.7 ± 0.2 −4.7 ± 0.2 0.33 11 26.1 ± 1.1 25.0 2 27.2 2 0.4/1.6 1 1.292 -15.77 14.74 1.87 30.49 0.43
0826+2637m 98.9 ± 0.7 −3.03 ± 0.01 1.42 6 7.6 ± 0.9 8.4 2 6.6 2 0.4/1.6 1 0.531 -14.77 7.48 1.02 32.66 0.32
0826+2637i 81.1 ± 0.7 14.77 ± 0.01 1.42 6 23.0 ± 2.3 23.0 6 1.4 1 0.531 -14.77 0.07 0.01 32.66 0.32
0835−4510 60 −6.2 ± 0.6 2.30 12 17.8 ± 0.9 18.7 13 16.9 12 0.4/2.3 2 0.089 -12.90 392.00 86.24 36.84 0.28
0837+0610 50 2.6 0.33 14 10.0 ± 0.5 9.6 2 10.5 2 0.4/1.4 2 1.274 -14.17 46.14 2.07 32.11 0.72
0908−4913m 96.1 ± 0.4 −5.9 ± 0.6 1.40 15 15.0 ± 1.5 15.0 15 1.40 2 0.107 -13.82 20.14 7.19 35.69 1.00
0908−4913i 83.9 ± 0.2 6.3 ± 0.4 1.40 15 17.0 ± 1.7 17.0 15 1.40 2 0.107 -13.82 7.86 2.81 35.69 1.00
0934−5249 13 ± 3 −4.3 ± 0.3 0.66 3 10.8 ± 0.3 11.0 3 10.5 16 0.66/1.4 1 1.445 -14.33 154.53 10.30 31.78 2.93
0942−5657 90 2.7 ± 0.9 0.66 3 8.1 ± 0.9 9.0 3 7.1 16 0.66/1.4 2 0.808 -13.40 327.61 18.14 33.47 5.02
0953+0755m 105.4 ± 0.5 22.1 ± 0.1 1.42 6 30.4 ± 1.0 29.4 2 31.4 2 0.4/1.6 1 0.253 -15.64 26.72 5.61 32.75 0.26
0953+0755i 74.6 ± 0.5 52.9 ± 0.1 1.42 6 47.0 ± 4.7 47.0 6 1.42 2 0.253 -15.64 0.53 0.11 32.75 0.26
1015−5719 101 ± 5 20 ± 5 1.37 17 155 ± 16 155.0 17 1.37 3 0.140 -13.24 21.35 35.92 4.87
1036−4926 70 ± 50 2.6 ± 0.5 0.66 3 15.0 ± 1.5 15.0 3 0.66 3 0.510 -14.78 682.78 32.69 8.71
1042−5521 32 ± 9 3.4 ± 0.5 0.66 3 12.5 ± 0.5 13.0 3 12.0 16 0.66/1.4 1 1.171 -14.17 682.09 30.21 32.22 6.98
1057−5226m 75.2 ± 0.4 36.1 ± 0.6 1.37 8 37.8 ± 3.8 37.8 8 1.37 4 0.197 -14.23 107.02 34.48 1.53
1057−5226i 104.8 ± 0.4 6.1 ± 0.6 1.37 8 47.7 ± 4.8 47.7 8 1.37 3 0.197 -14.23 80.25 34.48 1.53
1136+1551 88 ± 5 7 ± 2 1.40 18 11.8 ± 1.3 13.0 2 10.5 2 0.4/1.6 2 1.188 -14.43 31.48 3.92 31.94 0.35

1141−6545c 20+16
−8 2.3 ± 1.4 1.40 19 18.0 ± 1.8 18.0 19 1.4 2 0.394 -14.37 29.70 33.45 3.00

1253−5820 35 ± 10 6.6 ± 0.9 0.44 3 22.7 ± 4.4 27.0 3 18.3 16 0.44/1.4 3 0.255 -14.68 172.87 30.25 33.70 2.94
1328−4357 55 ± 25 3.0 ± 0.6 0.44 3 14.4 ± 1.6 16.0 3 12.8 20 0.44/1.6 2 0.533 -14.52 94.39 10.49 32.90 2.29
1513−5908 80 35 ± 10 1.35 21 95.2 ± 9.5 95.2 21 1.35 2 0.151 -11.82 29.04 18.20 37.23 4.40
1527−3931 70 ± 55 −1.2 ± 0.3 0.44/0.66 3 7.0 ± 0.7 7.0 3 0.66 2 2.418 -13.72 44.44 31.73 2.01
1543+0929 131.0 ± 5.7 −20.2 ± 2.3 1.42 6 109 ± 20 88.5 2 129.2 2 0.4/1.4 3 0.748 -15.36 2715.18 205.38 31.61 5.90
1549−4848m 92.5 ± 0.2 −3.5 ± 0.2 1.40 8 17.2 ± 2.8 19.9 3 14.4 8 0.66/1.4 2 0.288 -13.85 28.99 0.8 34.37 1.54
1549−4848i 87.5 ± 0.5 1.5 ± 0.2 1.40 8 13.6 ± 1.4 13.6 8 1.40 3 0.288 -13.85 11.31 0.31 34.37 1.54
1550−5418 160 14 8.36 22 117 ± 12 117.0 22 8.36 6 2.070 -10.63 313.06 35.00 9.74
1559−4438 37 ± 12 −3.1 ± 0.5 0.66/1.5 3 21.5 ± 4.5 17.0 3 26.0 3 0.66/1.5 2 0.257 -14.99 581.90 211.60 33.37 2.30
1603−5657 26 ± 6 6.3 ± 0.6 0.66 3 13.7 ± 4.3 18.0 3 9.4 16 0.66/1.4 2 0.496 -14.55 580.72 38.47 32.96 8.52
1622−3751 40 4.0 1.37 23 15.5 ± 1.6 15.5 23 1.37 2 0.731 -14.59 3.04 32.42 11.55
1651−5222 50 ± 20 −3.7 ± 0.6 0.66 3 14.3 ± 0.7 15.0 3 13.6 16 0.66/1.4 2 0.635 -14.74 939.14 118.41 32.45 6.39
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Table 1—Continued

PSR J Name α β Freq. W10 W 1
10 W 2

10 Freq. Nc P lg Ṗ L400 L1400 lg Ė d
(o) (o) (GHz) (o) (o) (o) (GHz) (s) (s/s) (mJy· kpc2) (mJy· kpc2) (erg/s) (kpc)

1705−1906m 94 ± 2 −12 ± 2 4.85 24 17.7 ± 0.5 17.3 2 18.2 2 0.4/1.6 2 0.299 -14.38 35.13 9.65 33.79 1.18
1705−1906i 86 ± 2 −4 ± 2 4.85 24 8.1 ± 0.2 7.9 2 8.3 2 0.6/1.6 1 0.299 -14.38 5.27 1.45 33.79 1.18
1709−1640 90 ± 65 −2 ± 1 4.85 24 11.9 ± 1.0 12.8 2 10.9 2 0.4/1.6 1 0.653 -14.20 75.81 6.45 32.95 1.27
1710−2616 30 20 1.37 23 148 ± 15 148.0 23 1.37 4 0.954 -16.70 9.46 29.95 4.26
1722−3712m 90.7 ± 0.1 5.4 ± 0.3 1.40 8 14.9 ± 1.2 16.0 3 13.7 16 0.66/1.4 1 0.236 -13.96 145.46 18.63 34.51 2.51
1722−3712i 89.3 ± 0.1 6.7 ± 0.5 1.40 8 14.2 ± 1 14.2 8 1.40 2 0.236 -13.96 12.04 1.53 34.51 2.51
1739−2903m 84.2 ± 0.3 3.3 ± 0.2 1.40 8 22.7 ± 1.2 23.8 2 21.5 8 0.6/1.6 2 0.323 -14.10 14.23 33.97 3.19
1739−2903i 95.8 ± 0.4 −8.2 ± 0.4 1.40 8 16.6 ± 4.3 20.8 3 12.3 8 0.66/1.4 1 0.323 -14.10 6.12 33.97 3.19
1740+1311 90 ± 86 −2 ± 2 4.85 24 14.3 ± 1.4 14.3 2 1.4 3 0.803 -14.84 546.07 88.74 32.05 4.77
1750−3503 11 ± 2 −5.5 ± 0.5 0.66 3 56 ± 5.6 56.0 3 0.66 1 0.684 -16.42 745.44 20.31 30.67 5.07
1751−4657 90 −1.7 ± 1.2 0.43 3 11.5 ± 0.5 12.0 3 11.0 25 0.43/0.95 2 0.742 -14.89 74.26 10.61 32.10 1.03
1825−0935m 95 −7 0.69 10 25.7 ± 1.1 26.7 10 24.6 10 0.69/3.1 2 0.769 -13.28 2.95 0.98 33.66 0.30
1825−0935i 85 3 0.69 10 15.0 ± 1.0 16.0 2 14.0 2 0.6/1.6 2 0.769 -13.28 0.29 0.1 33.66 0.30
1828−1101m 97.3 ± 0.6 −10.6 ± 1.5 3.10 8 11.0 ± 1.1 11.0 8 3.10 1 0.072 -13.83 121.32 36.19 7.26
1828−1101i 82.7 ± 0.6 4.0 ± 1.4 3.10 8 10.0 ± 1.0 14.0 8 3.10 1 0.072 -13.83 31.53 36.19 7.26
1841+0912 86.1 ± 11.4 2.30 ± 0.04 1.42 6 14.1 ± 1.5 12.6 2 15.5 2 0.4/1.4 3 0.381 -14.96 124.00 10.54 32.89 2.49
1852−2610 17 ± 3 −8.1 ± 0.6 0.43 3 39.0 ± 3.9 39.0 3 0.43 2 0.336 -16.06 61.29 7.15 31.96 2.26
1900−2600 25 1.8 0.33 26 40.5 ± 1.3 41.8 2 39.2 2 0.4/1.6 5 0.612 -15.69 64.19 6.37 31.54 0.70

1906+0746m 81+1
−66 8.9 ± 2.6 1.4 27 6.0 ± 0.6 6.0 28 1.4 1 0.144 -13.69 16.35 9.99 35.43 4.53

1906+0746i 99+66
−1 −9.1 ± 2.6 1.4 27 21.0 ± 2.1 21.0 28 1.4 1 0.144 -13.69 2.12 1.3 35.43 4.53

J1915+1606 157 ± 5 5.0 ± 1.2 1.4 29 53.0 ± 2.0 55.0 30 51.0 29 0.43/1.4 2 0.059 -17.06 203.35 45.75 33.23 7.13
1917+1353 73 ± 19.4 5.4 ± 0.5 1.42 6 18.6 ± 1.1 19.7 2 17.5 2 0.4/1.4 2 0.195 -14.14 1075.00 47.50 34.59 5.00
1918+1444 118.0 ± 33.4 −1.00 ± 0.33 1.42 6 8.4 ± 0.8 9.1 2 7.6 2 0.4/1.6 3 1.181 -12.67 3.18 1.99 33.71 1.41
1932+1059m 35.97 ± 0.95 25.55 ± 0.87 1.42 6 19.5 ± 1.4 20.9 2 18.1 2 0.4/1.6 3 0.227 -14.94 29.12 3.46 33.59 0.31
1941+0121 138 ± 32 8 ± 4 0.82 31 60.3 ± 6.0 60.3 31 0.82 2 0.217 -15.72 14.30 3.50 32.87 2.89
2043+2740 67 ± 15 10 ± 2 1.36 32 16.2 ± 1.6 16.2 32 1.36 2 0.096 -14.90 19.15 34.75 1.13
2048−1616 34 −1.6 0.69 10 17.1 ± 1.6 18.6 2 15.5 2 0.4/1.6 3 1.962 -13.96 104.69 11.73 31.76 0.95
2053−7200 27 ± 8 1.7 ± 0.3 0.66 3 40.6 ± 1.6 39.0 3 42.2 33 0.66/1.4 2 0.341 -15.71 31.97 6.62 32.29 1.05
2113+4644 38 ± 37 −4 ± 4 4.85 24 74.3 ± 1.2 73.1 2 75.5 2 0.6/0.9 3 1.015 -15.15 3680.00 304.00 31.43 4.00
2144−3933 90 0.4 ± 0.1 0.66 3 6.0 ± 0.6 6.0 3 0.66 1 8.510 -15.30 0.41 0.02 28.50 0.16

2240+5832 108+42
−98 15+0.8

−12.3 1.41 5 13.4 ± 1.3 13.4 5 1.41 3 0.140 -13.81 595.41 35.34 14.85

2337+6151 90 ± 88 −8 ± 7 4.85 24 25.8 ± 0.6 25.2 2 26.3 2 0.4/1.4 2 0.495 -12.71 61.01 8.54 34.80 2.47
2346−0609 28 ± 9 −1.3 ± 0.3 0.44 3 21.0 ± 2.1 21.0 3 0.44 3 1.181 -14.87 42.26 7.68 31.51 1.96

a α and β were constrained by fitting the multi-frequency pulse widths of average profiles, the width of the average drift profile, the fractional drift intensity, the interval between
successive sub-pulses in the same period and parts of PPA (without the orthogonal mode jumps).

b α and β were constrained by fitting the PPA sweep rate and multi-frequency pulse widths.

c α and β were constrained by fitting multi-epoch pulse profiles and PPA variations with a precessional model.

The symbol “m” stands for main pulses, while “i” means interpulses.

References: 1 − Smits et al. (2007), 2 − Gould & Lyne (1998), 3 − Manchester et al. (1998), 4 − Johnston et al. (2008), 5 − Theureau et al. (2011), 6 − Everett & Weisberg
(2001), 7 − Gil & Lyne (1995), 8 − Keith et al. (2010), 9 − Becker et al. (2005), 10 − Johnston et al. (2007), 11 − Rankin et al. (2006), 12 − Krishnamohan & Downs (1983), 13 −
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Taylor et al. (1993), 14 − Rankin & Wright (2007), 15 − Kramer & Johnston (2008), 16 − Hobbs et al. (2004), 17 − Johnston & Weisberg (2006), 18 − Gangadhara et al. (1999),
19 − Manchester et al. (2010), 20 − Wu et al. (1993), 21 − Crawford et al. (2001b), 22 − Camilo et al. (2008), 23 − Tiburzi et al. (2013), 24 − von Hoensbroech et al. (1998), 25
− van Ommen et al. (1997), 26 − Mitra & Rankin (2008), 27 − Desvignes et al. (2013), 28 − Kasian (2012), 29 − Weisberg & Taylor (2002), 30 − Taylor & Weisberg (1982), 31 −

Boyles et al. (2013), 32 − Noutsos et al. (2011), 33 − Qiao et al. (1995).
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A. Approximate relations for dipolar magnetic field

Below we list the basic approximate relationships for dipolar magnetic field used in our derivation. The
dipolar magnetic field strength at r (distance to the stellar center) can be written as

B ≃ Bs

(

R

r

)3 (
1 + 9 cos2 θpc
1 + 9 cos2 θ

)1/2

≃ Bs

(

R

r

)3 (

1 +
9

20
sin2 θ

)

, (A1)

where Bs is the surface magnetic field strength, θ is the polar angle of the radius vector r with respect to
the magnetic pole, and θpc, usually very small, is the polar angle of the foot point of last open field line on
the polar cap. Since the sin2 θ term is minor, it is safe to use B ≃ Bs(R/r)3 when deriving the density of
particle number density at r (Eq. (5)).

The beam radius ρ, namely the opening angle between the tangent of field line and magnetic pole, is
related to θ by tan ρ ≃ 3 tan θ/(2− tan2 θ). When θ is small, there is

ρ ≃ 3

2
θ. (A2)

With this approximation, the altitude will be

r = Re sin
2 θ ≃ 4

9
fRcρ

2, (A3)

where Re ≃ fRc.

Then, the other variables that depends on r, e.g. the particle number density n in Eq. (5), three-
dimensional sizes of a sub emission region dh, dw and ds in Appendix B and eventually the emission
intensity I in Eqs. (7)-(9), can be expressed as a function of ρ.

B. Derivation of emission intensity

We first derive the volume dVf of an elementary region between the filed lines f and f +df in a subregion
as shown in Fig. 2(a), and then the emission intensity I from the whole subregion. The emission direction
is assumed to be along the tangent of magnetic field line. The following approximations are applicable to
low emission altitudes (r << Rc), where the aberration and retardation effects are neglected.

The volume dVf can be determined by the arc length ds, the transverse width dw and the height between
the field lines f and f + df . Fig. 22 gives the quantities needed to calculate the height dh and the arc
length ds, where dh is dh ≃ dr sinκ. The arc length between A and B can be approximated by the length
AF along the tangent of the field line, so we have ds ≃ rdθ/ sinκ. When r << Re so that the polar angle
θ = arcsin(r/Re)

1/2 is small, it is convenient to use the approximation ρ ≃ 3/2θ, therefore, κ = ρ− θ ≃ θ/2.
With r = fRc sin

2 θ, one has dr = Rc sin
2 θdf , then the height and arc length read

dh ≃ 1

2
θ3Rcdf, (B1)

and
ds ≃ 2fRcθdθ. (B2)

The transverse width dw is estimated as the distance between the two vertices that have the same altitudes
r and polar angles θ, as marked by A and E in Fig. 2(d). It is easy to find dw ≃ rdξ. The angle dξ between
OA and OE can be figured out by using the law of cosines of spherical geometry cos dξ = cos2 θ+sin2 θ cos dϕ,
where dϕ is the azimuthal distance between OA and OE. Using small angle approximation, one has dξ ≃
sin θdϕ, therefore,

dw = fRcθ
3dϕ. (B3)
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The volume of such a subregion is (Eq. 2)

dVf = dsdwdh ≃ R3
cθ

7f2dfdθdϕ. (B4)

Substituting Eqs. (1)−(8) into Eq. (9), one has the emission intensity

I =

∫ f2
f1

dPf

dΩ
=

4

9

(

Bs cosα

Pce

)2

M2λ3ie0R
3
cθ

6

∫ f2

f1

(

R

r

)6−q

f2df. (B5)

With Eqs. (A2) and (A3), it can be reduced to Eqs. (10) and (11).

C. Derivation of the transverse intensity distribution for a sub beam in Model B

In the following we use two coordinates, the magnetic azimuth ϕ and the dimensionless colatitude χ, to
denote a foot point of an open field line on the polar cap (see Fig. 23), where ϕ is counted anticlockwise
from the equatorial side of meridian plane, and χ is defined as the ratio between the polar angles of the
foot point and the polar cap boundary, namely χ ≡ θ/θpc. Given χ, the parameter f of the field line will
be f = (9/4)(R/Rc)(ρpcχ)

−2, which varies from 1 (the polar cap boundary where χ = 1) to infinite (the
magnetic pole where χ = 0).

Let us suppose that there is a circular discharging area centered at (χ0, ϕ0) with a radius ℜ0 on the
polar cap, in which the multiplicity factor follows a gaussian distribution around the center “C”, i.e., M =
M0 exp[−ℜ2/(2σ2)], where ℜ ≡ ∆θ/θpc is the dimensionless angular distance of a field-line foot point from
the center. In order to locate the area between the magnetic pole and the polar cap boundary, we assume
ℜ0 ≤ min[χ0, (1− χ0)].

Below we derive the relationship between the emission intensity I and ϕ. It is noticed that the multiplicity
M along a path with a fixed ϕ is not uniform, so we need to do integration over the path between “1” and
“2” along the line MA with ϕ in Fig. 23. Substituting ℜ =

√

χ2
0 + χ2 − 2χ0χ cos(ϕ− ϕ0) into Eq. (B5),

one has

Iouter(ϕ) = A2P
q−4Ṗ cos2 αρ2q−6

∫ f2

f1

e−[χ2
0+χ2

−2χ0χ cos(ϕ−ϕ0)]/σ
2

f q−4df, (C1)

where

χ =
3

2

(

R

fRc

)1/2

ρ−1
pc , (C2)

and

A2 =

(

6.4× 1019

3ce

)2 (
2c

9π

)q−3

R6−qλ3ie0M
2
0 (C3)

for the outer beam (ρ > (3/2)
√

R/(Rcf1)).

Strictly to say, one should use spherical geometry relations for the quantities in the triangle △MCA,
including ℜ, however, since θ and θpc are very small for normal pulsars, plane geometry relations are good
approximations. The lower and upper limits f1 and f2 in Eq. (C1), which corresponds to the intersections
“1” and “2”, can be found out through the following steps. In △MCA, one has

ℜ
sin(ϕ− ϕ0)

=
χ0

sin(ϕ− ϕ0 + ϑ)
=

χ

sinϑ
. (C4)

With these relations, the ϑ angles for “1” and “2” are ϑ1,2 = arccos[sin(ϕ − ϕ0)
2χ0/ℜ0 ∓ cos(ϕ −

ϕ0)
√

1− (χ0/ℜ0)2 sin(ϕ− ϕ0)2], with the sign “-” for “1” and “+” for “2”. Therefore, the χ parameters of
the two intersections are χ1,2 = ℜ0 sinϑ1,2/ sin(ϕ− ϕ0), and hence f1,2 = (9/4)(R/Rc)(ρpcχ1,2)

−2.
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In the inner beam, the LOS may miss some outmost part of the area if ρ ≤ (3/2)
√

R/(Rcf1). At the
azimuth ϕ, the outmost visible field line for an arbitrary ρ has fo = 9R/(4Rcρ

2). Therefore, the lower
boundary of the integration should be determined by f ′

1 = min[fo, f1]. Finally, the intensity distribution of
the inner beam reads

Iinner(ϕ) = A2P
q−4Ṗ cos2 αρ2q−6

∫ f2

f ′

1

e−[χ2
0+χ2

−2χ0χ cos(ϕ−ϕ0)]/σ
2

f q−4df. (C5)

Eqs. (C1) (C3) and (C5) are exactly Eqs. (20), (21) and (22) in Section 2.3, respectively.
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Fig. 22.— Diagram for the poloidal cross section of an elementary region between field lines with f (the
lower thick curve) and f +df (the upper solid curve). dh and the length AF are used as approximations for
the height of this region and the arc length ds (AB), respectively.

Fig. 23.— Diagram for a circular discharging area on the polar cap. The symbol “M” and “Ω” stand for
the magnetic and rotation poles. The grey scale in the circle represent the Gaussian distribution of the
multiplicity across the area. “1”and “2” stand for the two intersections between the line MA and the circle.
The line through Ω and M is the projection of the meridian plane, where its lower part is close to the
equatorial side.
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